Can the Increase in the Eddy Length Scale under Global Warming Cause the Poleward Shift of the Jet Streams?

Joseph Kidston Princeton University, Princeton, New Jersey

Search for other papers by Joseph Kidston in
Current site
Google Scholar
PubMed
Close
,
G. K. Vallis Princeton University, Princeton, New Jersey

Search for other papers by G. K. Vallis in
Current site
Google Scholar
PubMed
Close
,
S. M. Dean National Institute of Water and Atmospheric Research, Wellington, New Zealand

Search for other papers by S. M. Dean in
Current site
Google Scholar
PubMed
Close
, and
J. A. Renwick National Institute of Water and Atmospheric Research, Wellington, New Zealand

Search for other papers by J. A. Renwick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The question of whether an increase in the atmospheric eddy length scale may cause a poleward shift of the midlatitude jet streams is addressed. An increase in the length scale of the eddy reduces its zonal phase speed and so causes eddies to dissipate farther from the jet core. If the eddy dissipation region on the poleward flank of the jet overlaps with the eddy source latitudes, shifting this dissipation to higher latitudes will alter which latitudes are a net source of baroclinic eddies, and hence the eddy-driven jet stream may shift poleward. This behavior does not affect the equatorward flank of the jet in the same way because the dissipation region on the equatorward flank is well separated from the source latitudes. An experiment with a barotropic model is presented in which an increase in the length scale of a midlatitude perturbation results in a poleward shift in the acceleration of the zonal flow. Initial investigations indicate that this behavior is also important in both observational data and the output of comprehensive general circulation models (GCMs). A simplified GCM is used to show that the latitude of the eddy-driven jet is well correlated with the eddy length scale. It is argued that the increase in the eddy length scale causes the poleward shift of the jet in these experiments, rather than vice versa.

Corresponding author address: Joseph Kidston, Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, Princeton, NJ 08540. E-mail: jkidston@princeton.edu

Abstract

The question of whether an increase in the atmospheric eddy length scale may cause a poleward shift of the midlatitude jet streams is addressed. An increase in the length scale of the eddy reduces its zonal phase speed and so causes eddies to dissipate farther from the jet core. If the eddy dissipation region on the poleward flank of the jet overlaps with the eddy source latitudes, shifting this dissipation to higher latitudes will alter which latitudes are a net source of baroclinic eddies, and hence the eddy-driven jet stream may shift poleward. This behavior does not affect the equatorward flank of the jet in the same way because the dissipation region on the equatorward flank is well separated from the source latitudes. An experiment with a barotropic model is presented in which an increase in the length scale of a midlatitude perturbation results in a poleward shift in the acceleration of the zonal flow. Initial investigations indicate that this behavior is also important in both observational data and the output of comprehensive general circulation models (GCMs). A simplified GCM is used to show that the latitude of the eddy-driven jet is well correlated with the eddy length scale. It is argued that the increase in the eddy length scale causes the poleward shift of the jet in these experiments, rather than vice versa.

Corresponding author address: Joseph Kidston, Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus, Princeton, NJ 08540. E-mail: jkidston@princeton.edu
Save
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641–4673.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., D. L. Hartmann, D. M. W. Frierson, and J. Kidston, 2010: Effect of latitude on the persistence of eddy-driven jets. Geophys. Res. Lett., 37, L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 3518–3543.

  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109.

    • Search Google Scholar
    • Export Citation
  • Chen, G., 2007: Mechanisms that control the latitude of jet streams and surface westerlies. Ph.D. thesis, Princeton University, 153 pp.

  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 2899–2915.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 5942–5959.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855–874.

    • Search Google Scholar
    • Export Citation
  • Edmon, H., B. Hoskins, and M. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: The recent trend and variance increase of the annular mode. J. Climate, 15, 88–94.

  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 2548–2566.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., G. J. Boer, and G. M. Flato, 1999: The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys. Res. Lett., 26, 1601–1604.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731–2739.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 3296–3311.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., L. M. Polvani, and D. Ancukiewicz, 2008: Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett., 35, L22707, doi:10.1029/2008GL035712.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., and S. T. Garner, 1997: The equilibration of short baroclinic waves. J. Atmos. Sci., 54, 2850–2871.

  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 3672–3685.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97, 1412–1417.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1979: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125–128.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412–417.

  • Held, I. M., and P. J. Phillips, 1987: Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci., 44, 200–207.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665–668.

    • Search Google Scholar
    • Export Citation
  • Johanson, C., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 2713–2725.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and G. K. Vallis, 2010: The relationship between the latitude and width of the eddy-driven jet. Geophys. Res. Lett., 37, L21809, doi:10.1029/2010GL044849.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010a: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, L03806, doi:10.1029/2009GL041615.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., J. A. Frierson, D. M. W. Renwick, and G. K. Vallis, 2010b: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate, 23, 6186–6199.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 2238–2249.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 5835–5851.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 4134–4143.

  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111, D18101, doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Murphy, B., and B. Timbal, 2008: A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol., 28, 859–879.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 993–1023.

  • Ostermeier, G. M., and J. M. Wallace, 2003: Trends in the North Atlantic oscillation—Northern Hemisphere annular mode during the twentieth century. J. Climate, 16, 336–341.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688–697.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417–443.

  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 1486–1489.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610–614; Corrigendum, 436, 1200.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–899.

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 1018–1036.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17–55.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 1346–1362.

    • Search Google Scholar
    • Export Citation
  • Welch, W. T., and K.-K. Tung, 1998: On the equilibrium spectrum of transient waves in the atmosphere. J. Atmos. Sci., 55, 2833–2851.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 1954–1961.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1242 379 82
PDF Downloads 615 125 7