• Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature, and d18O of the glacial deep ocean. Science, 298, 17691773.

    • Search Google Scholar
    • Export Citation
  • Beardsley, R., and J. Festa, 1972: A numerical model of convection driven by a surface stress and non-uniform horizontal heating. J. Phys. Oceanogr., 2, 444455.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., and H. Stommel, 1961: On the abyssal circulation of the World Ocean—IV. Origin and rate of circulation of deep ocean water as determined with the aid of tracers. Deep-Sea Res., 8, 95110.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 2007: A simple model of millennial oscillations of the thermohaline circulation. J. Phys. Oceanogr., 37, 11421155.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., M. Ben Jelloul, and F. Sevellec, 2006: Bifurcation structure of thermohaline millennial oscillations. J. Climate, 19, 57775795.

    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in southern Weddell Sea. Deep-Sea Res., 23, 301317.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., and E. Tziperman, 2001: The physics behind biogeochemical glacial-interglacial CO2 variations. Geophys. Res. Lett., 28, 24212424.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079.

  • Gordon, A. L., 1981: Seasonality of Southern Ocean sea ice. J. Geophys. Res., 86, 41934197.

  • Gordon, A. L., 1991: The Southern Ocean: Its involvement in global change. Proc. Int Conf. on the Role of Polar Regions in Global Change, Fairbanks, AK, University of Fairbanks, Alaska.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and B. A. Huber, 1990: Southern Ocean winter mixed layer. J. Geophys. Res., 95, 11 65511 672.

  • Gordon, A. L., B. A. Huber, H. H. Hellmer, and A. Ffield, 1993: Deep and bottom water of the Weddell Sea’s western rim. Science, 262, 9597.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., M. Visbeck, and J. C. Comiso, 2007: A possible link between the Weddell Polynya and the Southern Annular Mode. J. Climate, 20, 25582571.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., J. D. Opsteegh, F. M. Selten, and X. Wang, 2001: Rapid transitions and ultra-low frequency behavior in a 40-kyr integration with a coupled climate model of intermediate complexity. Climate Dyn., 17, 559570.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248.

  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic slope front. Mar. Chem., 35, 924.

  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res., 113, C05027, doi:10.1029/2007JC004477.

    • Search Google Scholar
    • Export Citation
  • Kampf, J., 2005: Cascading-driven upwelling in submarine canyons at high latitudes. J. Geophys. Res., 110, C02007, doi:10.1029/2004JC002554.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 3954.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., and B. B. Stephens, 2001: Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography, 16, 112131, 330–334.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and R. J. Haarsma, 1994: Variability and multiple equilibria of the thermohaline circulation associated with deep-water formation. J. Phys. Oceanogr., 24, 14801493.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Martinson, D. G., 1990: Evolution of the Southern Ocean winter mixed layer and sea ice–open ocean deep-water formation and ventilation. J. Geophys. Res., 95, 11 64111 654.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., and A. C. Hirst, 2003: Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Global Biogeochem. Cycles, 17, 1125, doi:10.1029/2002GB001997.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., M. Eby, A. J. Weaver, and O. A. Saenko, 2008: CO2 threshold for millennial-scale oscillations in the climate system: Implications for global warming scenarios. Climate Dyn., 30, 161174.

    • Search Google Scholar
    • Export Citation
  • Naviera Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and M. Visbeck, 2005: A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr., 35, 11901205.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., S. S. Jacobs, A. L. Gordon, and M. Visbeck, 2001: Cooling and ventilating the abyssal ocean. Geophys. Res. Lett., 28, 29232926.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, and U. Mikolajewicz, 1995: Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J. Phys. Oceanogr., 25, 20462064.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., A. Schmittner, and A. J. Weaver, 2002: On the role of wind-driven sea ice motion on ocean ventilation. J. Phys. Oceanogr., 32, 33763395.

    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859869.

  • Sigman, D. M., M. P. Hain, and G. H. Haug, 2010: The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466, 4755.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.

  • Stommel, H., 1962: On the smallness of sinking regions in the ocean. Proc. Natl. Acad. Sci. USA, 48, 766.

  • Stössel, A., K. Yang, and S. J. Kim, 2002: On the role of sea ice and convection in a global ocean model. J. Phys. Oceanogr., 32, 11941208.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995a: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995b: Effect of sea ice on the salinity of Antarctic bottom waters. J. Phys. Oceanogr., 25, 19801997.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., R. Murnane, S. Carson, A. Gnanadesikan, and J. L. Sarmiento, 2003: Representation of the carbon cycle in box models and GCMs—2. Organic pump. Global Biogeochem. Cycles, 17, 1027, doi:10.1029/2001GB001841.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1993: On the formation of ice on deep weakly stratified water. Tellus, 45A, 143157.

  • Welander, P., 1982: A simple heat salt oscillator. Dyn. Atmos. Oceans, 6, 233242.

  • Winton, M., and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23, 13891410.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and Coauthors, 1983: Antarctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observation. NASA, 206 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 116 2
PDF Downloads 140 89 2

On the Linkage between Antarctic Surface Water Stratification and Global Deep-Water Temperature

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 IFM-GEOMAR, Kiel, Germany
Restricted access

Abstract

The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic Deep Water. A steady-state deep-water temperature is achieved such that the Antarctic surface can barely undergo convection. A two-box model is used to illustrate this feedback loop in its simplest expression and to develop basic concepts, such as the bounds on the operation of this loop. The model illustrates the possible dominating influence of Antarctic upwelling rate and Antarctic freshwater balance on global deep-water temperatures.

Corresponding author address: Ralph F. Keeling, Scripps Institution of Oceanography, UCSD, Mail Code 0244, 9500 Gilman Dr., La Jolla, CA 92093-0244. E-mail: rkeeling@ucsd.edu

Abstract

The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic Deep Water. A steady-state deep-water temperature is achieved such that the Antarctic surface can barely undergo convection. A two-box model is used to illustrate this feedback loop in its simplest expression and to develop basic concepts, such as the bounds on the operation of this loop. The model illustrates the possible dominating influence of Antarctic upwelling rate and Antarctic freshwater balance on global deep-water temperatures.

Corresponding author address: Ralph F. Keeling, Scripps Institution of Oceanography, UCSD, Mail Code 0244, 9500 Gilman Dr., La Jolla, CA 92093-0244. E-mail: rkeeling@ucsd.edu
Save