• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81, 169177.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705.

    • Search Google Scholar
    • Export Citation
  • Bettge, T. W., J. W. Weatherly, W. M. Washington, D. Pollard, B. P. Briegleb, and W. G. Strand Jr., 1996: The CSM sea ice model. NCAR Tech. Note NCAR/TN-425+STR, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1983: The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 13, 11931207.

  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235.

  • Cresswell, G. R., and J. L. Luick, 2001: Current measurements in the Halmahera Sea. J. Geophys. Res., 106, 13 94513 951.

  • du Penhoat, Y., and M. A. Cane, 1991: Effect of low-latitude western boundary gaps on the reflection of equatorial motions. J. Geophys. Res., 96, 33073322.

    • Search Google Scholar
    • Export Citation
  • Fieux, M., R. Molcard, and A. G. Ilahude, 1996: Geostrophic transport of Pacific–Indian Oceans throughflow. J. Geophys. Res., 101, 12 42112 432.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1996: The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101, 12 21712 237.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 33253328.

  • Gordon, A. L., R. D. Susanto, A. Ffield, B. A. Huber, W. Pranowo, and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004–2006. Geophys. Res. Lett., 35, L24605, doi:10.1029/2008GL036372.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801.

  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., A. Leetmaa, M. J. Nath, and H. L. Wang, 2005: Influence of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18, 29222942.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Liu, H., W. Li, and X. Zhang, 2005: Climatology and Variability of the Indonesian Throughflow in an eddy-permitting oceanic GCM. Adv. Atmos. Sci., 22, 496508, doi:10.1007/BF02918483.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Y. Yu, W. Li, and X. Zhang, 2004: LASG/IAP Climate System Ocean Model (LICOM1.0): User’s Manual (in Chinese). Science Publication, 107 pp.

    • Search Google Scholar
    • Export Citation
  • Luick, J. L., and G. R. Cresswell, 2001: Current measurements in the Maluku Sea. J. Geophys. Res., 106, 13 95313 958.

  • Luo, J. J., R. C. Zhang, S. K. Behera, Y. Masumoto, F. F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101, 12 25512 263.

  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, A298, 603635.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41, 281382.

  • Molcard, R., M. Fieux, J. C. Swallow, A. G. Ilahude, and J. Banjarnahor, 1994: Low frequency variability of the currents in Indonesian channels Savu-Roti and Roti-Ashmore Reef. Deep-Sea Res. I, 41, 16431661.

    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, and A. G. Ilahude, 1996: The Indo-Pacific throughflow in the Timor Passage. J. Geophys. Res., 101, 12 41112 420.

    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, and F. Syamsudin, 2001: The throughflow within Ombai Strait. Deep-Sea Res. I, 48, 12371253.

  • Murtugudde, R., A. J. Busalacchi, and J. Beauchamp, 1998: Seasonal-to-interannual effects of the Indonesian throughflow on the tropical Indo-Pacific Basin. J. Geophys. Res., 103, 21 42521 441.

    • Search Google Scholar
    • Export Citation
  • Packnowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr., 11, 14421451.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 1999: Seasonal variations of upper-ocean transport from the Pacific to the Indian Ocean via Indonesian Straits. J. Phys. Oceanogr., 29, 29302944.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., R. Lukas, and G. T. Mitchum, 1997: Large-scale estimation of transport from the Pacific to the Indian Ocean. J. Geophys. Res., 102, 27 79527 812.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., M. Mao, and Y. Kashino, 1999: Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian seas. J. Phys. Oceanogr., 29, 15991618.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. Pedlosky, 2005: Reflection and transmission of equatorial Rossby Waves. J. Phys. Oceanogr., 35, 363373.

  • Sprintall, J., A. L. Gordon, R. Murtugudde, and R. D. Susanto, 2000: A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res., 105, 17 21717 230.

    • Search Google Scholar
    • Export Citation
  • Verschell, M. A., J. C. Kindle, and J. J. O'Brien, 1995: Effects of Indo-Pacific Throughflow on the upper tropical Pacific and Indian Oceans. J. Geophys. Res., 100, 18 40918 420.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., and E. K. Schneider, 2001: The Indonesian throughflow’s effect on global climate determined from the COLA coupled climate. J. Climate, 14, 30293042.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China, 47 (Suppl), 421.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and W. Meng, 1998: Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO, Part 1. Data analyses (in Chinese). Chin. J. Atmos. Sci., 22, 470.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a Coupled GCM. J. Climate, 17, 30373054.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1987: Indonesian throughflow and the associated pressure gradient. J. Geophys. Res., 92, 12 94112 946.

  • Yu, Y., and X. Y. Liu, 2004: ENSO and Indian Ocean dipole mode in three coupled GCM. Acta Oceanol. Sin., 23, 581595.

  • Yu, Y., and D.-Z. Sun, 2009: Response of ENSO to subtropical cooling: A study using the IAP coupled model. J. Climate, 22, 59025917.

  • Yu, Y., X. Zhang, and Y. Guo, 2004: Global coupled ocean–atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444455.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., H. Zhi, B. Wang, H. Wan, W. Zheng, H. Liu, W. Li, and T. Zhou, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641654.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., 2005: Role of the Kelvin and Rossby waves in the seasonal cycle of the equatorial Pacific Ocean circulation. J. Geophys. Res., 110, C04004, doi:10.1029/2004JC002344.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and W. Han, 2006: Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 930944.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and H. Liu, 2009: Long wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 11151132.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., M. M. Rienecker, and P. S. Schopf, 2004: Long wave dynamics of the interannual variability in a numerical hindcast of the equatorial Pacific Ocean circulation during the 1990s. J. Geophys. Res., 109, C05019, doi:10.1029/2003JC001936.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., H. Zhou, and X. Zhao, 2010: Tropical Pacific ENSO forced by the Indian Ocean dipole through the Indonesian throughflow. Science, submitted.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 225 14
PDF Downloads 334 185 11

Forcing of the Indian Ocean Dipole on the Interannual Variations of the Tropical Pacific Ocean: Roles of the Indonesian Throughflow

View More View Less
  • 1 Key Laboratory of Ocean Circulation and Waves, and Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.

Additional affiliation: Graduate University of Chinese Academy of Sciences, Beijing, China.

Corresponding author address: Dongliang Yuan, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. E-mail: dyuan@ms.qdio.ac.cn

Abstract

Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.

Additional affiliation: Graduate University of Chinese Academy of Sciences, Beijing, China.

Corresponding author address: Dongliang Yuan, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. E-mail: dyuan@ms.qdio.ac.cn
Save