Stationary Atmospheric Responses to an Idealized Sea Surface Temperature Anomaly in the Southern Ocean

Guillaume Maze Laboratoire de Physique des Océans, UMR 6523, Ifremer, CNRS, IRD, UBO, Plouzané, France

Search for other papers by Guillaume Maze in
Current site
Google Scholar
PubMed
Close
,
Fabio D’Andrea Laboratoire de Météorologie Dynamique, École Normale Supérieure, Paris, France

Search for other papers by Fabio D’Andrea in
Current site
Google Scholar
PubMed
Close
,
Alain Colin de Verdière Laboratoire de Physique des Océans, Brest, France

Search for other papers by Alain Colin de Verdière in
Current site
Google Scholar
PubMed
Close
, and
Patrice Klein Laboratoire de Physique des Océans, Brest, France

Search for other papers by Patrice Klein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The stationary atmospheric response to an idealized sea surface temperature anomaly (SSTA) is studied with a quasigeostrophic atmospheric model of the Southern Hemisphere. Sensitivity of the stationary response to the midlatitude SSTA location is determined and responses are decomposed on vertical modes.

The SSTA almost directly forces baroclinic responses, inducing warm-air anomalies 40°–50° downstream, eastward, to the SSTA. These baroclinic responses arise from an equilibrium between the SSTA-induced anomalous vortex stretching and (i) advection by the quasi-stationary flow and (ii) dissipation by high-frequency eddies.

The barotropic response consists of a midlatitude ridge (trough) and a South Pole trough (ridge) for SSTAs localized from the Drake Passage to the western Indian Ocean (from south of Australia to the center of the Pacific Ocean). This response can be further decomposed into (i) a zonally asymmetric component, a quasi-stationary wave train forced by a barotropic ridge downstream of the SSTA; and (ii) a zonal-mean component similar to a meridional shift of westerlies and hence a southern annular mode (SAM)-like pattern. The former component is phase locked with the SSTA position, while the latter has a phase that depends on the relative SSTA position with regard to the background quasi-stationary wave pattern. The study shows that the barotropic downstream ridge response is responsible for modifying the low-frequency eddy–mean flow interactions through relative vorticity fluxes and inducing the bipolar projection of the zonal-mean response.

Corresponding author address: Guillaume Maze, Laboratoire de Physique des Océans, IFREMER, BP 70, 29280 Plouzané, France. E-mail: gmaze@ifremer.fr

Abstract

The stationary atmospheric response to an idealized sea surface temperature anomaly (SSTA) is studied with a quasigeostrophic atmospheric model of the Southern Hemisphere. Sensitivity of the stationary response to the midlatitude SSTA location is determined and responses are decomposed on vertical modes.

The SSTA almost directly forces baroclinic responses, inducing warm-air anomalies 40°–50° downstream, eastward, to the SSTA. These baroclinic responses arise from an equilibrium between the SSTA-induced anomalous vortex stretching and (i) advection by the quasi-stationary flow and (ii) dissipation by high-frequency eddies.

The barotropic response consists of a midlatitude ridge (trough) and a South Pole trough (ridge) for SSTAs localized from the Drake Passage to the western Indian Ocean (from south of Australia to the center of the Pacific Ocean). This response can be further decomposed into (i) a zonally asymmetric component, a quasi-stationary wave train forced by a barotropic ridge downstream of the SSTA; and (ii) a zonal-mean component similar to a meridional shift of westerlies and hence a southern annular mode (SAM)-like pattern. The former component is phase locked with the SSTA position, while the latter has a phase that depends on the relative SSTA position with regard to the background quasi-stationary wave pattern. The study shows that the barotropic downstream ridge response is responsible for modifying the low-frequency eddy–mean flow interactions through relative vorticity fluxes and inducing the bipolar projection of the zonal-mean response.

Corresponding author address: Guillaume Maze, Laboratoire de Physique des Océans, IFREMER, BP 70, 29280 Plouzané, France. E-mail: gmaze@ifremer.fr
Save
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496.

    • Search Google Scholar
    • Export Citation
  • Codron, F., 2007: Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci., 64, 33283339.

  • Connolley, W., 2002: Long-term variation of the Antarctic circumpolar wave. J. Geophys. Res., 107, 8076, doi:10.1029/2000JC000380.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2000: Reducing systematic errors by empirically correcting model errors. Tellus, 52A, 2141, doi:10.1034/j.1600-0870.2000.520103.x.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., A. Czaja, and J. Marshall, 2005: Impact of anomalous ocean heat transport on the North Atlantic Oscillation. J. Climate, 18, 49554969.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 10491067.

  • Ferreira, D., and C. Frankignoul, 2008: Transient atmospheric response to interactive SST anomalies. J. Climate, 21, 576583.

  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390.

    • Search Google Scholar
    • Export Citation
  • Gibson, R., P. Kållberg, and S. Uppala, 1996: The ECMWF Re-analysis (ERA) project. ECMWF Newsletter, No. 73, ECMWF, Reading, United Kingdom, 7–17.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., D. P. Stevens, R. T. Tokmakian, and K. J. Heywood, 2001: Antarctic Circumpolar Current response to zonally averaged winds. J. Geophys. Res., 106, 27432759.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275.

  • Grassi, B., G. Redaelli, and G. Visconti, 2005: Simulation of polar Antarctic trends: Influence of tropical SST. Geophys. Res. Lett., 32, L23806, doi:10.1029/2005GL023804.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14, 20352053.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315.

  • Held, I., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hoskins, B., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2003: Atmospheric response to zonal variations in midlatitude SST: Transient and stationary eddies and their feedback. J. Climate, 16, 33143329.

    • Search Google Scholar
    • Export Citation
  • Kidson, J., 1988: Indices of the Southern Hemisphere zonal wind. J. Climate, 1, 183194.

  • Kravtsov, S., J. E. Ten Hoeve, S. B. Feldstein, S. Lee, and S.-W. Son, 2009: The relationship between statistically linear and nonlinear feedbacks and zonal-mean flow variability in an idealized climate model. J. Atmos. Sci., 66, 353372.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and N.-C. Lau, 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on time scale and pattern polarity. J. Climate, 5, 271283.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256.

    • Search Google Scholar
    • Export Citation
  • Li, S., J. Perlwitz, M. P. Hoerling, and X. Chen, 2010: Opposite annular responses of the Northern and Southern Hemispheres to Indian Ocean warming. J. Climate, 23, 37203738.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50, 17921818.

  • Maze, G., 2006: Ocean-atmosphere low-frequency interactions in the Southern Ocean. Ph.D. thesis, Université Paris VI, 130 pp. [Available online at http://www.guillaumemaze.org/research/phd.]

  • Maze, G., F. D’Andrea, and A. Colin de Verdière, 2006: Low-frequency variability in the Southern Ocean region in a simplified coupled model. J. Geophys. Res., 111, C05010, doi:10.1029/2005JC003181.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14, 29432959.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., and T. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2007: Forced annular mode patterns in a simple atmospheric general circulation model. J. Atmos. Sci., 64, 36113626.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., 1987: Predictability in the extended range. J. Atmos. Sci., 44, 34953527.

  • Rodwell, M., and C. Folland, 2002: Atlantic air-sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128, 14131443.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2003: Modes of atmospheric variability over the Southern Ocean. J. Geophys. Res., 108, 8078, doi:10.1029/2000JC000542.

  • Smagorinsky, J., 1953: The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342366.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.

  • Ting, M., and S. Peng, 1995: Dynamics of the early and middle winter atmospheric responses to the northwest Atlantic SST anomalies. J. Climate, 8, 22392254.

    • Search Google Scholar
    • Export Citation
  • Verdy, A., J. Marshall, and A. Czaja, 2006: Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 36, 13171331.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562578.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2001: Zonal wind vacillation and its interaction with the ocean: Implications for interannual variability and predictability. J. Geophys. Res., 106 (D20), 23 96523 975.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2002: Wave–mean flow feedback and the persistence of simulated zonal flow vacillation. J. Atmos. Sci., 59, 12741288.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2007: Southern “annular modes” simulated by a climate model—Patterns, mechanisms, and uses. J. Atmos. Sci., 64, 31133131.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2010: Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model. J. Geophys. Res., 115, D10108, doi:10.1029/2009JD012120.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 2004: Comments on “Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annual mode.” J. Climate, 17, 22492254.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 207 40 3
PDF Downloads 89 22 3