• Adler, R., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Ainsworth, E., and S. Long, 2004: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165, 351372.

    • Search Google Scholar
    • Export Citation
  • Alton, P., and P. Bodin, 2010: A comparative study of a multilayer and a productivity (light-use) efficiency land-surface model over different temporal scales. Agric. For. Meteor., 150, 182195.

    • Search Google Scholar
    • Export Citation
  • Alton, P., P. North, J. Kaduk, and S. Los, 2005: Radiative transfer modeling of direct and diffuse sunlight in a Siberian pine forest. J. Geophys. Res., 110, D23209, doi:10.1029/2005JD006060.

    • Search Google Scholar
    • Export Citation
  • Alton, P., P. North, and S. Los, 2007: The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biol., 13, 776787.

    • Search Google Scholar
    • Export Citation
  • Alton, P., R. Fisher, S. Los, and M. Williams, 2009: Simulations of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology. Global Biogeochem. Cycles, 23, GB4023, doi:10.1029/2009GB003540.

    • Search Google Scholar
    • Export Citation
  • Annan, J., D. Lunt, J. Hargreaves, and P. Valdes, 2005: Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter. Nonlinear Processes Geophys., 12, 363371.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1975: Die Weltwasserbilanz Oldenburg. Verlag, 179 pp.

  • Behrenfeld, M., and P. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 120.

    • Search Google Scholar
    • Export Citation
  • Behrenfeld, M., J. Randerson, and C. McClain, 2001: Biospheric primary production during and ENSO transition. Science, 291, 25942597.

    • Search Google Scholar
    • Export Citation
  • Behrenfeld, M., K. Worthington, R. Sherrell, F. Chavez, P. Strutton, M. McPhaden, and D. Shea, 2006: Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature, 442, 10251028.

    • Search Google Scholar
    • Export Citation
  • Betts, A., J. Ball, A. Beljaars, M. Miller, and P. Veterbo, 1986: The land surface–atmosphere interaction: A review based on observational and global modelling perspectives. J. Geophys. Res., 101, 72097225.

    • Search Google Scholar
    • Export Citation
  • Betts, R., and Coauthors, 2007: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448, 10371041.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., S. Levis, M. Loutre, M. Crucifix, M. Claussen, A. Ganopolski, C. Kubatzki, and V. Petoukhov, 2003: Stability analysis of the climate-vegetation system in the northern high latitudes. Climate Change, 57, 119138.

    • Search Google Scholar
    • Export Citation
  • Campbell, B., and J. Norman, 1998: Environmental Biophysics. 2nd ed. Springer-Verlag, 286 pp.

  • Cao, M., S. Prince, J. Small, and S. Goetz, 2004: Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7, 233242.

    • Search Google Scholar
    • Export Citation
  • Carswell, F., P. Meir, and E. Wandelli, 2000: Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol., 20, 179186.

  • Chahine, M., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373380.

  • Chou, S., E. Nelkin, J. Ardizzone, R. Atlas, and C. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 32563273.

    • Search Google Scholar
    • Export Citation
  • Claussen, M., L. Mysak, and A. Weaver, 2002: Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Climate Dyn., 18, 579586.

    • Search Google Scholar
    • Export Citation
  • Coe, M., 2000: Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM. J. Climate, 13, 686704.

    • Search Google Scholar
    • Export Citation
  • Collatz, C., J. Ball, C. Grivet, and J. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes laminar boundary layer. Agric. For. Meteor., 54, 107136.

    • Search Google Scholar
    • Export Citation
  • Cox, P., C. Huntingford, and R. Harding, 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 212–213, 7994.

    • Search Google Scholar
    • Export Citation
  • Cox, P., R. Betts, C. Bunton, R. Essery, P. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., D. Kicklighter, and A. Bondeau, 1999: Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol., 5 (Suppl. 1), 115.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Dai, A., T. Qian, and K. Trenberth, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792.

  • Dirmeyer, P., A. Dolman, and N. Sato, 1999: The global soil wetness project: A pilot project for global land surface modeling and validation. Bull. Amer. Meteor. Soc., 80, 851878.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., A. Schlosser, and K. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288.

    • Search Google Scholar
    • Export Citation
  • Dutkiewicz, S., A. Sokolov, J. Scott, and P. Stone, 2005: A three-dimensional ocean–sea ice–carbon cycle model and its coupling to a two-dimensional atmospheric model: Uses in climate change studies. MIT Joint Program on Science and Policy of Global Change Rep. 122, 1–51.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E., and R. Bras, 1996: Precipitation recycling. Rev. Geophys., 34, 367378.

  • Esias, W., M. Abbott, and I. Barton, 1998: An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36, 12501265.

    • Search Google Scholar
    • Export Citation
  • Etheridge, D., L. Steele, R. Langenfelds, R. Francey, J. Barnola, and V. Morgan, 1996: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res., 101, 41154128.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G., S. von Caemmerer, and J. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890.

    • Search Google Scholar
    • Export Citation
  • Field, C., J. Behrenfeld, J. Randerson, and P. Falkowski, 1998: Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237240.

    • Search Google Scholar
    • Export Citation
  • Fisher, B., 2007: Statistical error decomposition of regional-scale climatological precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteor. Climatol., 46, 791813.

    • Search Google Scholar
    • Export Citation
  • Franz, B., S. Bailey, and R. Eplee, 2005: The continuity of ocean color measurements from SeaWiFS to MODIS. Earth Observing Systems X, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5882), 304–316.

    • Search Google Scholar
    • Export Citation
  • Friend, A., A. Stevens, R. Knox, and M. Cannell, 1997: A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Modell., 95, 249287.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., P. Cox, H. Douville, J. Polcher, and P. Valdes, 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13, 30663079.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., S. Rost, W. von Bloh, and W. Lucht, 2008: Causes of change in 20th century global river discharge. Geophys. Res. Lett., 35, L20405, doi:10.1029/2008GL035258.

    • Search Google Scholar
    • Export Citation
  • Gregg, W., and M. Conkright, 2002: Decadal changes in global ocean chlorophyll. Geophys. Res. Lett., 29, L014689, doi:10.1029/2002GL014689.

    • Search Google Scholar
    • Export Citation
  • Hansen, M., and B. Reed, 2000: A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int. J. Remote Sens., 21, 13651373.

    • Search Google Scholar
    • Export Citation
  • Henning, D., 1989: Atlas of the Surface Heat Balance of the Continents. Gebrueder Borntraeger, 402 pp.

  • Hirose, T., and M. Werger, 1987: Maximizing daily canopy photosynthesis with respect to leaf N allocation pattern in the canopy. Oecologia, 72, 520526.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D., F. Kelliher, J. Byers, J. Hunt, T. McSeveny, and P. Wier, 1994: Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75, 134150.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and A. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655.

    • Search Google Scholar
    • Export Citation
  • Houghton, R., 2007: Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci., 35, 313347.

  • Huang, J., H. van den Dool, and K. Georgakakos, 1996: Analysis of model calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362.

    • Search Google Scholar
    • Export Citation
  • Huntington, T., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395.

  • IGBP, 1992: Improved global data for land applications. IGBP Global Change Rep. 20, J. R. G. Townshend, Ed., International Geosphere Biosphere Programme, 75 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, H., 1992: Plant and Microclimate. Cambridge University Press, 428 pp.

  • Keeling, R., S. Piper, A. Bollenbacher, and J. Walker, 2009: Atmospheric CO2 records from sites in the SIO air sampling network. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, 1–3.

    • Search Google Scholar
    • Export Citation
  • Knohl, A., and D. Baldocchi, 2008: Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res., 113, G02023, doi:10.1029/2007JG000663.

    • Search Google Scholar
    • Export Citation
  • Knorr, W., and M. Heimann, 2001: Uncertainties in global terrestrial biosphere modeling, Part I: A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Global Biogeochem. Cycles, 15, 207225.

    • Search Google Scholar
    • Export Citation
  • Labat, D., Y. Godderis, J.-L. Probst, and J.-L. Guyot, 2004: Evidence for global runoff increase relating to climate warming. Adv. Water Resour., 27, 631642.

    • Search Google Scholar
    • Export Citation
  • Law, B., M. Ryan, and P. Anthoni, 1999: Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol., 5, 169182.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and J. Slingo, 2004: An annual cycle of vegetation in a GCM. Part 1: Implementation and impact on evaporation. Climate Dyn., 22, 87105.

    • Search Google Scholar
    • Export Citation
  • Lenton, T., R. Marsh, and A. Price, 2007: Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework. Climate Dyn., 29, 591613.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., R. McKane, D. Tingey, and P. Beedlow, 2000: Vertical gradients in photosynthetic light response within an old-growth douglas-fir and western hemlock canopy. Tree Physiol., 20, 447.

    • Search Google Scholar
    • Export Citation
  • Lieth, H. F. H., 1975: Primary production of the major vegetation units of the world. Primary Productivity of the Biosphere, H. Lieth and R. H. Whittaker, Eds., Ecological Studies and Synthesis, Vol. 14, Springer-Verlag, 203–215.

    • Search Google Scholar
    • Export Citation
  • Los, S., G. Weedon, P. North, J. Kaduk, C. Taylor, and P. Cox, 2006: An observation-based estimate of the strength of rainfall–vegetation interactions in the Sahel. Geophys. Res. Lett., 33, L16402, doi:10.1029/2006GL027065.

    • Search Google Scholar
    • Export Citation
  • McCallum, I., W. Wagner, C. Schmullius, A. Shvidenko, M. Obersteiner, S. Fritz, and S. Nilsson, 2009: Satellite-based terrestrial production efficiency modeling. Carbon Balance Manag., 4, 8.

    • Search Google Scholar
    • Export Citation
  • Medlyn, B., D. Barrett, J. Landsberg, P. Sands, and R. Clement, 2003: Conversion of canopy-intercepted radiation to photosynthate: Review of modeling approaches for regional scales. Funct. Plant Biol., 30, 153169.

    • Search Google Scholar
    • Export Citation
  • Medlyn, B., A. Robinson, R. Clement, and E. McMurtie, 2005: On the validation of models of forest CO2 exchange using eddy covariance data: Some perils and pitfalls. Tree Physiol., 25, 839857.

    • Search Google Scholar
    • Export Citation
  • Mehta, V., A. DeCandis, and A. Mehta, 2005: Remote-sensing-based estimates of the fundamental global water cycle: Annual cycle. J. Geophys. Res., 110, D22103, doi:10.1029/2004JD005672.

    • Search Google Scholar
    • Export Citation
  • Meir, P., B. Kruijt, M. Broadmeadow, E. Barbosa, O. Kull, F. Carswell, A. Nobre, and P. Jarvis, 2002: Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell Environ., 25, 343357.

    • Search Google Scholar
    • Export Citation
  • Mercado, L., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. Cox, 2009: Impact of changes in diffuse radiation of the global land carbon sink. Nature, 458, 10141018.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterisations: I. Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Moorcroft, P., 2006: How close are we to a predictive science of the biosphere? Trends Ecol. Evol., 21, 400407.

  • Morcrette, J., 1990: Impact of changes to the radiative transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118, 847873.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and J. Berthon, 1989: Surface pigments, algal biomass profiles and potential production of the euphotic layers: Relationships re-investigated in view of remote-sensing applications. Limnol. Oceangor., 34, 15451562.

    • Search Google Scholar
    • Export Citation
  • Morisette, J., F. Baret, and J. Privette, 2006: Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens., 44, 18041817.

    • Search Google Scholar
    • Export Citation
  • Müller, C., and W. Lucht, 2007: Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolutions. J. Geophys. Res., 112, D06105, doi:10.1029/2006JD007875.

    • Search Google Scholar
    • Export Citation
  • Nemani, R., C. Keeling, H. Hashimoto, W. Jolly, S. Piper, C. Tucker, R. Myneni, and S. Running, 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560.

    • Search Google Scholar
    • Export Citation
  • Newman, E., 1969: Resistance to water flow in soil and plant. II. A review of experimental evidence on the Rhizosphere resistance. J. Appl. Ecol., 6, 261272.

    • Search Google Scholar
    • Export Citation
  • Norman, J., 1992: Scaling processes between leaf and canopy levels. Scaling Physiological Processes: Leaf to Globe, J. Ehleringer and C. Field, Eds., Academic Press, 41–76.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Y. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interactions, 2. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Olson, R., J. Scurlock, S. Prince, D. Zheng, and K. Johnson, Eds., cited 2008: NPP multi-biome: NPP and driver data for ecosystem model-data intercomparison, Revision 1. Dataset. Oak Ridge National Laboratory, Distributed Active Archive Center. [Available online at http://www.daac.ornl.gov.]

    • Search Google Scholar
    • Export Citation
  • Palmer, J., and J. Totterdell, 2001: Production and export in a global ocean ecosystem model. Deep-Sea Res., 48, 11691198.

  • Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and S. Rahmstorf, 2000: CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate. Climate Dyn., 16, 117.

    • Search Google Scholar
    • Export Citation
  • Peylin, P., P. Bousquet, and C. Le Quere, 2005: Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochem. Cycles, 19, GB1011, doi:10.1029/2003GB002214.

    • Search Google Scholar
    • Export Citation
  • Piao, S., P. Ciais, P. Friedlingstein, N. de Noblet-Ducoudre, P. Cadule, N. Viovy, and T. Wang, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem. Cycles, 23, GB4026 doi:10.1029/2008GB0033339.

    • Search Google Scholar
    • Export Citation
  • Purves, D., and S. Pacala, 2008: Predictive models of forest dynamics. Science, 320, 14521453.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Roderick, M., G. Farquhar, S. Berry, and I. Noble, 2001: On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 2130.

    • Search Google Scholar
    • Export Citation
  • Ryan, M., 1991: The effects of climate change on plant respiration. Ecol. Appl., 1, 157167.

  • Schlesinger, W., 1997: Biogeochemistry: An Analysis of Global Change. Academic Press, 432 pp.

  • Schlosser, C., and P. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 13161338.

  • Schulze, E. D., F. Kelliher, C. Korner, J. Lloyd, and R. Leuning, 1994: Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst., 25, 629660.

    • Search Google Scholar
    • Export Citation
  • Scurlock, J., and R. Olson, 2002: Terrestrial net primary productivity—A brief history and a new worldwide database. Environ. Rev., 10, 91109.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, A. Clement, and C. Herweijer, 2003: Why is there an evaporation minimum at the equator. J. Climate, 16, 37933802.

    • Search Google Scholar
    • Export Citation
  • Sellers, P., D. Randall, and G. Collatz, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705.

    • Search Google Scholar
    • Export Citation
  • Sharma, D., A. Das Gupta, and M. Babel, 2007: Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrol. Earth Syst. Sci. Discuss., 4, 3574.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. Wood, 2006: Development of a 50 year high-resolution global dataset of meteorological forcings for land surface modelling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Smith, T., R. Reynolds, T. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Strahler, A., and A. Strahler, 1992: Modern Physical Geography. John Wiley & Sons, 656 pp.

  • Trenberth, K., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381.

  • Trenberth, K., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., J. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Williams, D., and Coauthors, 2004: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteor., 125, 241258.

    • Search Google Scholar
    • Export Citation
  • Yu, F., K. Price, J. Ellis, J. Feddema, and P. Shi, 2004: Interannual variations of the grassland boundaries bordering the eastern edges of the Gobi Desert in central Asia. Int. J. Remote Sens., 25, 327346.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): the role of the changing wind speed. J. Climate, 20, 53765390.

  • Yu, L., and R. Weller, 2007: Objectively analyzed air-sea heat fluxes (OAFlux) for the global oceans. Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yuan, W., S. Liu, and G. Zhou, 2007: Deriving a light-use efficiency model from eddy covariance covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteor., 143, 189207.

    • Search Google Scholar
    • Export Citation
  • Zaehle, S., S. Sitch, B. Smith, and F. Hatterman, 2005: Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Global Biogeochem. Cycles, 19, GB3020, doi:10.1029/2004GB002395.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 28 1
PDF Downloads 38 15 0

Model Estimates of the Land and Ocean Contributions to Biospheric Carbon and Water Fluxes Using MODIS Satellite Data

View More View Less
  • 1 Geography Department, University of Swansea, Swansea, United Kingdom
Restricted access

Abstract

Land and ocean are often treated separately in modeling studies despite their close links through the carbon, water, and energy cycles. However, biospheric models, particularly when used in conjunction with recent satellite datasets, provide a new, fully coupled, global perspective. The current investigation uses a new version of the Grid Enabled Integrated Earth system (GENIE-SF) to compare both the magnitude and the seasonal and zonal variation in water flux [evaporation E and precipitation (PPT)] and carbon flux [net primary productivity (NPP)] above land and ocean. GENIE-SF contains state-of-the-art representations of photosynthesis and is driven by the phenological cycles of leaf area index (LAI) and marine chlorophyll concentration, both recorded with the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors. The current study reveals the striking uniformity of the ocean–atmosphere carbon and water flux exchange, both temporally and spatially, compared to the corresponding land–atmosphere exchange. Although biospheric annual NPP (108 ± 27 GtC yr−1) is split almost equally between land (52% ± 9%) and ocean (48% ± 9%), the oceanic contribution to biospheric annual E exceeds that of the land by a factor of 6.7 ± 1.7. Simulations conducted over a 50-yr period (1951–2000) suggest that a 16% increase in land NPP, owing mainly to CO2 fertilization, may be partially offset by a decline in marine productivity.

Corresponding author address: Paul Alton, Swansea University, Singleton Park, Swansea, SA2 8EF, United Kingdom. E-mail: p.alton@swansea.ac.uk

Abstract

Land and ocean are often treated separately in modeling studies despite their close links through the carbon, water, and energy cycles. However, biospheric models, particularly when used in conjunction with recent satellite datasets, provide a new, fully coupled, global perspective. The current investigation uses a new version of the Grid Enabled Integrated Earth system (GENIE-SF) to compare both the magnitude and the seasonal and zonal variation in water flux [evaporation E and precipitation (PPT)] and carbon flux [net primary productivity (NPP)] above land and ocean. GENIE-SF contains state-of-the-art representations of photosynthesis and is driven by the phenological cycles of leaf area index (LAI) and marine chlorophyll concentration, both recorded with the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors. The current study reveals the striking uniformity of the ocean–atmosphere carbon and water flux exchange, both temporally and spatially, compared to the corresponding land–atmosphere exchange. Although biospheric annual NPP (108 ± 27 GtC yr−1) is split almost equally between land (52% ± 9%) and ocean (48% ± 9%), the oceanic contribution to biospheric annual E exceeds that of the land by a factor of 6.7 ± 1.7. Simulations conducted over a 50-yr period (1951–2000) suggest that a 16% increase in land NPP, owing mainly to CO2 fertilization, may be partially offset by a decline in marine productivity.

Corresponding author address: Paul Alton, Swansea University, Singleton Park, Swansea, SA2 8EF, United Kingdom. E-mail: p.alton@swansea.ac.uk
Save