• Acker, J. G., and G. Leptoukh, 2007: Online analysis enhances use of NASA Earth science data. EOS, Trans. Amer. Geophys. Union, 88 (2), 1417.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Cimatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Alishouse, J. C., S. A. Snyder, V. Jennifer, and R. R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811816.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain re-evaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, doi:10.1029/2004GL022328.

    • Search Google Scholar
    • Export Citation
  • Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures: Implications for NWP and climate studies. Bull. Amer. Meteor. Soc., 89, 16891707.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., L. Takacs, A. DaSilva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, in press.

  • Bromwich, D. H., and S.-H. Wang, 2005: Evaluation of the NCEP–NCAR and ECMWF 15- and 40-yr reanalyses using rawinsonde data from two independent Arctic field experiments. Mon. Wea. Rev., 133, 35623578.

    • Search Google Scholar
    • Export Citation
  • Brunke, M., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., L. Isaksen, and E. Anderson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 18651877.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, P. Van Delst, and F. Weng, 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115, D12303, doi:10.1029/2009JD013379.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-1999-104606, Vol. 15, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., M. J. Suarez, X. Z. Liang, and M.M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2001-104606, Vol. 19, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., A. da Silva, M. Chin, and T. Diehl, 2010: Global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820.

    • Search Google Scholar
    • Export Citation
  • Collins, W., 1999: Determination of new adjustment tables in order to bring radiosonde temperature and height measurements from different sonde types into relative agreement. EMC/NCEP/NOAA, 12 pp. [Available online at http://www.emc.ncep.noaa.gov/mmb/papers/collins/new_tables/new_tables.html.]

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128.

  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879.

  • Dee, D., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343.

  • Dee, D., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Wea. Rev., 127, 18221834.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and S. Uppala, 2008: Variational bias correction in ERA-Interim. ECMWF Tech. Memo. 575, ECMWF, Reading, United Kingdom, 26 pp.

  • Dee, D., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011a: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dee, D., E. Källén, A. J. Simmons, and L. Haimberger, 2011b: Comments on “Reanalyses suitable for characterizing long-term trends.” Bull. Amer. Meteor. Soc., 92, 7072.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., R. J. Purser, W.-S. Wu, R. Treadon, M. Pondeca, D. Parrish, and D. Kleist, 2003: Flow-dependent Jb in a global grid-point 3DVAR. Proc. ECMWF Annual Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 125–134.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist, 1996: An eight-year (1987–94) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891905.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., S. E. Cohn, J. Guo, and S. Pawson, 2006: Construction and application of covariance functions with variable length fields. Quart. J. Roy. Meteor. Soc., 132, 18151838.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 13771403.

  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)—Version 1. NOAA Tech. Rep. 122, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., J. Perlwitz, and T. A. Shaw, 2011: Observed decadal changes in downward wave coupling between the stratosphere and troposphere in the Southern Hemisphere. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and P. Lönnberg, 1989: The verification of objective analyses: Diagnostics of analysis system performance. Meteor. Atmos. Phys., 40, 327.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., M. Matricardi, D. Dee, and S. Uppala, 2009: Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU-A. Quart. J. Roy. Meteor. Soc., 135, 20862099.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suárez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a GCM, Part 1, Model structure. J. Geophys. Res., 105, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 138, 31873199.

    • Search Google Scholar
    • Export Citation
  • Louis, J., M. Tiedtke, and J. Geleyn, 1982: A short history of the PBL parameterization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–80.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2008a: The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2008b: The high Arctic in extreme winters: Vortex, temperature, and MLS and ACE-FTS trace gas evolution. Atmos. Chem. Phys., 8, 505522.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., X. Xiong, Y. Han, T. J. Kleespies, and P. Van Delst, 2006: Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach. Appl. Opt., 45, 20282034, doi:10.1364/AO.45.002028.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert, a parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2005: JRA-25: Japanese 25-Year Re-Analysis Project—Progress and status. Quart. J. Roy. Meteor. Soc., 131, 32593268.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and M. Fiorino, 1998a: The tropical lower stratosphere in atmospheric reanalyses. Part 1: Thermal structure and the annual cycle. Climate Dyn., 14, 631644.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and M. Fiorino, 1998b: The tropical lower stratosphere in atmospheric reanalyses. Part 2: The quasi-biennial oscillation. Climate Dyn., 14, 645658.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and Coauthors, 2007: Stratospheric transport using six-hour averaged winds from a data assimilation system. J. Geophys. Res., 112, D23103, doi:10.1029/2006JD007673.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003a: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003b: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 15361548.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, J. M. Russell, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci., 55, 163185.

    • Search Google Scholar
    • Export Citation
  • Redder, C. R., J. K. Luers, and R. E. Eskridge, 2004: Unexplained discontinuity in the U.S. radiosonde temperature data. Part II: Stratosphere. J. Atmos. Oceanic Technol., 21, 11331144.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1 and 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2008-104606, Vol. 27, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: Atmospheric reanalyses: Recent progress and prospects for the future. NASA/TM-2011-104606, Vol. 29, NASA GSFC, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Saunders, R., and Coauthors, 2007: A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances. J. Geophys. Res., 112, D01S90, doi:10.1029/2006JD007088.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., R. Rood, and J. Pfaendtner, 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc., 74, 23312342.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., D. Dee, S. Uppala, J. Woollen, J. Bates, and S. Worley, 2006: Workshop report: The development of improved observational datasets for reanalysis: Lessons learned and future directions. NOAA/NASA–NSF, 31 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Schubert273.pdf.]

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, and M. J. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., J. J. Barnett, and W. J. Randel, 2008: Temperature trends derived from Stratospheric Sounding Unit radiances: The effect of increasing CO2 on the weighting function. Geophys. Res. Lett., 35, L02710, doi:10.1029/2007GL032218.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bull. Amer. Meteor. Soc., 91, 353361.

    • Search Google Scholar
    • Export Citation
  • Treadon, R. E., H.-L. Pan, W.-S. Wu, Y. Lin, W. S. Olson, and R. J. Kuligowski, 2002: Global and Regional Moisture Analyses at NCEP. Proc. ECMWF/GEWEX Workshop on Humidity Analysis, Reading, United Kingdom, ECMWF, 33–47.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102, 87038718.

  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yi, Y., J. S. Kimball, L. A. Jones, R. H. Reichle, and K. C. McDonald, 2011: Evaluation of MERRA land surface estimates in preparation for the Soil Moisture Active Passive mission. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Zou, C., M. D. Goldberg, Z. Cheng, N. C. Grody, J. T. Sullivan, C. Cao, and D. Tarpley, 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111, D19114, doi:10.1029/2005JD006798.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9512 4952 297
PDF Downloads 5442 3007 183

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
  • | 3 Science Applications International Corporation, Beltsville, Maryland
  • | 4 Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 5 Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 6 NASA Marshall Space Flight Center, Huntsville, Alabama
  • | 7 NOAA/National Centers for Environmental Prediction, Camp Springs, Maryland
Restricted access

Abstract

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.

By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses.

Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Current affiliation: NOAA/Earth Systems Resource Laboratory, Boulder, Colorado.

Corresponding author address: Michele Rienecker, Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: michele.m.rienecker@nasa.gov

This article included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Abstract

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.

By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses.

Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Current affiliation: NOAA/Earth Systems Resource Laboratory, Boulder, Colorado.

Corresponding author address: Michele Rienecker, Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: michele.m.rienecker@nasa.gov

This article included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Save