• Allan, R. P., , A. Slingo, , S. F. Milton, , and I. Culverwell, 2005: Exploitation of Geostationary Earth Radiation Budget data using simulations from a numerical weather prediction model: Methodology and data validation. J. Geophys. Res., 110, D14111, doi:10.1029/2004JD005698.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., , A. Slingo, , S. F. Milton, , and M. E. Brooks, 2007: Evaluation of the Met Office global forecast model using Geostationary Earth Radiation Budget (GERB) data. Quart. J. Roy. Meteor. Soc., 133, 19932010.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Koehler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., , P. Watts, , J. F. Meirink, , and R. Roebeling, 2010: Rainwater path in warm clouds derived from combined visible/near-infrared and microwave satellite observations. J. Geophys. Res., 115, D19120, doi:10.1029/2009JD013679.

    • Search Google Scholar
    • Export Citation
  • Boers, R., , J. B. Jenssen, , and P. B. Krummel, 1998: Microphysical and shortwave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124, 151168.

    • Search Google Scholar
    • Export Citation
  • Champeaux, J. I., , V. Masson, , and F. Chauvin, 2003: ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteor. Appl., 12, 2932.

    • Search Google Scholar
    • Export Citation
  • Chen, R., , R. Wood, , Z. Li, , R. Ferraro, , and F. L. Chang, 2008: Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data. J. Geophys. Res., 113, D00A02, doi:10.1029/2007JD009596.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , E. Kjellström, , F. Giorgi, , G. Lenderink, and M. Rummukainen, 2011: Assigning relative weights to regional climate models: Exploring the concept. Climate Res., 44, 179194.

    • Search Google Scholar
    • Export Citation
  • Clerbaux, N., and Coauthors, 2009: Comparison of GERB instantaneous radiance and flux products with CERES Edition-2 data. Remote Sens. Environ., 113, 102114.

    • Search Google Scholar
    • Export Citation
  • da Rocha, R. P., , C. A. Morales, , S. V. Cuadra, , and T. Ambrizzi, 2009: Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. J. Geophys. Res., 114, D10108, doi:10.1029/2008JD010212.

    • Search Google Scholar
    • Export Citation
  • de Bruijn, E. I. F., , and E. van Meijgaard, 2005: Verification of HIRLAM with ECMWF physics compared with HIRLAM reference versions. HIRLAM Tech. Rep. 63, 39 pp.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., , and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54, 21572173.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., , and A. Los, 2008: The effect of temperature and humidity fluctuations on the liquid water path of non-precipitating closed cell stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 134, 403416.

    • Search Google Scholar
    • Export Citation
  • Derrien, M., , and H. Le Gléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732.

  • Derrien, M., , and H. Le Gléau, cited 2010: Validation report for “cloud products” (CMa-PGE01 v3.0, CT-PGE02 v2.0 & CTTH-PGE03 v2.1). [Available online at http://www.nwcsaf.org/indexScientificDocumentation.html.]

    • Search Google Scholar
    • Export Citation
  • Dewitte, S., , L. Gonzalez, , N. Clerbaux, , A. Ipe, , C. Bertrand, , and B. De Paepe, 2008: The Geostationary Earth Radiation Budget Edition 1 data processing algorithms. Adv. Space Res., 41, 19061913.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., , and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled ocean–atmosphere models. J. Climate, 21, 51355144.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., , and J. E. Russell, 2005: Developing clear-sky flux products for the Geostationary Earth Radiation Budget experiment. J. Appl. Meteor., 44, 13611374.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., 2009: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett., 36, L20805, doi:10.1029/2009GL040394.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget project. Bull. Amer. Meteor. Soc., 86, 945960.

  • Keil, A., , and J. M. Haywood, 2003: Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties. J. Geophys. Res., 108, 8467, doi:10.1029/2002JD002315.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531.

    • Search Google Scholar
    • Export Citation
  • Kuipers Munneke, P., , C. H. Reijmer, , M. R. van den Broeke, , G. König-Langlo, , P. Stammes, , and W. H. Knap, 2008: Analysis of clear-sky Antarctic snow albedo using observations and radiative transfer modeling. J. Geophys. Res., 113, D17118, doi:10.1029/2007JD009653.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., , D. W. Johnson, , and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., , M. D. King, , C. B. Schaaf, , and S. Platnick, 2008: MODIS-derived spatially complete surface albedo products: Spatial and temporal pixel distribution and zonal averages. J. Appl. Meteor. Climatol., 47, 28792894.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., , F. J. Wentz, , and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211739.

    • Search Google Scholar
    • Export Citation
  • Paeth, H., and Coauthors, 2011: Progress in regional downscaling of West African precipitation. Atmos. Sci. Lett., 12, 7582, doi:10.1002/asl.306.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., , and E. van Meijgaard, 2009: Evaluation of the daylight cycle of model-predicted cloud amount and condensed water path with observations from MSG SEVIRI. J. Climate, 22, 17491766.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., , A. J. Feijt, , and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , and D. Liu, 2009: Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, cited 2010: Annual validation report of the CM-SAF. CM-SAF Doc. SAF/CM/DWD/VAL/OR5. [Available online at www.cmsaf.eu.]

    • Search Google Scholar
    • Export Citation
  • Seethala, C., , and Á. Horváth, 2010: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, doi:10.1029/2009JD012662.

    • Search Google Scholar
    • Export Citation
  • Su, W., , A. Bodas-Salcedo, , K.-M. Xu, , and T. P. Charlock, 2010: Comparison of the tropical radiative flux and cloud radiative effect profiles in a climate model with Clouds and the Earth’s Radiant Eenergy System (CERES) data. J. Geophys. Res., 115, D01105, doi:10.1029/2009JD012460.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., , D. Dee, , S. Kobayashi, , P. Berrisford, , and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kindgom, 12–18.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., , U. Andræ, , and B. Rockel, 2001: Comparison of model predicted cloud parameters and surface radiative fluxes with observations on the 100 km scale. Meteor. Atmos. Phys., 77, 109130.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., and Coauthors, 2008: The regional atmospheric climate model RACMO, version 2.1, KNMI Tech. Rep. 302, 43 pp.

  • Wang, P., , W. H. Knap, , and P. Stammes, 2011: Cloudy-sky shortwave radiative closure for a Baseline Surface Radiation Network site. J. Geophys. Res., 116, D08202, doi:10.1029/2010JD015141.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., , and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231250, doi:10.1007/s00382-007-0232-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 1
PDF Downloads 4 4 1

Evaluation of Model-Predicted Top-of-Atmosphere Radiation and Cloud Parameters over Africa with Observations from GERB and SEVIRI

View More View Less
  • 1 Royal Netherlands Meteorological Institute (KNMI), de Bilt, Netherlands
  • | 2 Royal Meteorological Institute of Belgium, Uccle, Belgium
  • | 3 Royal Netherlands Meteorological Institute (KNMI), de Bilt, Netherlands
© Get Permissions
Restricted access

Abstract

This study compared the Regional Atmospheric Climate Model version 2 (RACMO) with satellite data by simultaneously looking at cloud properties and top-of-atmosphere (TOA) fluxes. This study used cloud properties retrieved from Spinning Enhanced Visible and Infrared Imager (SEVIRI) data and TOA shortwave and longwave outgoing radiative fluxes measured by one of the Geostationary Earth Radiation Budget (GERB) sensors. Both SEVIRI and GERB resolve the diurnal cycle extremely well with 96 images per day. To test the physical parameterizations of the model, RACMO was run for a domain-enclosing Africa and part of the surrounding oceans. Simulations for July 2006, forced at the lateral boundaries by ERA-Interim reanalyses, show generally accurate positioning of the various cloud regimes but also some important model–observation differences, which the authors tried to reduce by altering model parameterizations. These differences are as follows: 1) TOA albedo differences in clear-sky regions like the Sahara and southern Africa. These differences were considerably reduced by prescribing the surface albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. 2) A considerable overestimation of outgoing longwave radiation within the continental ITCZ caused by the fact that modeled cirrus clouds are far too thin. 3) Underestimation by the model of cloud cover, condensed water path and albedo of the stratocumulus fields off the coast of Angola. The authors reduced these underestimations by suppressing the amount of turbulent mixing above the boundary layer, by prescribing droplet radii derived from SEVIRI data, and by assuming in-cloud horizontal homogeneity for the radiation calculations. 4) Overestimation by the model of the albedo of the trade wind cumulus fields over the Atlantic Ocean. This study argues that this overestimation is likely caused by a model overestimation of condensed water path. In general, the analyses demonstrate the power of the simultaneous evaluation of the TOA fluxes and cloud properties.

Corresponding author address: Wouter Greuell, KNMI, Wilhelminalaan 10, NL 3732 GK, Netherlands. E-mail: greuell@knmi.nl

Abstract

This study compared the Regional Atmospheric Climate Model version 2 (RACMO) with satellite data by simultaneously looking at cloud properties and top-of-atmosphere (TOA) fluxes. This study used cloud properties retrieved from Spinning Enhanced Visible and Infrared Imager (SEVIRI) data and TOA shortwave and longwave outgoing radiative fluxes measured by one of the Geostationary Earth Radiation Budget (GERB) sensors. Both SEVIRI and GERB resolve the diurnal cycle extremely well with 96 images per day. To test the physical parameterizations of the model, RACMO was run for a domain-enclosing Africa and part of the surrounding oceans. Simulations for July 2006, forced at the lateral boundaries by ERA-Interim reanalyses, show generally accurate positioning of the various cloud regimes but also some important model–observation differences, which the authors tried to reduce by altering model parameterizations. These differences are as follows: 1) TOA albedo differences in clear-sky regions like the Sahara and southern Africa. These differences were considerably reduced by prescribing the surface albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. 2) A considerable overestimation of outgoing longwave radiation within the continental ITCZ caused by the fact that modeled cirrus clouds are far too thin. 3) Underestimation by the model of cloud cover, condensed water path and albedo of the stratocumulus fields off the coast of Angola. The authors reduced these underestimations by suppressing the amount of turbulent mixing above the boundary layer, by prescribing droplet radii derived from SEVIRI data, and by assuming in-cloud horizontal homogeneity for the radiation calculations. 4) Overestimation by the model of the albedo of the trade wind cumulus fields over the Atlantic Ocean. This study argues that this overestimation is likely caused by a model overestimation of condensed water path. In general, the analyses demonstrate the power of the simultaneous evaluation of the TOA fluxes and cloud properties.

Corresponding author address: Wouter Greuell, KNMI, Wilhelminalaan 10, NL 3732 GK, Netherlands. E-mail: greuell@knmi.nl
Save