• Alexander, M. A., 1990: Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Climate Dyn., 5, 5365.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N. C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , M. M. Holland, , M. Eby, , and A. J. Weaver, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412463.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., , K. W. Oleson, , M. Vertenstein, , S. Levis, , X. Zeng, , Y. Dai, , R. E. Dickson, , and Z. L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., , E. Xoplaki, , C. Casty, , A. Pauling, , and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and W. Zhou, 2005: PDO, ENSO, and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, doi:10.1029/2004GL022015.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM3). National Center for Atmospheric Research Tech. Rep. NCAR/TN-464_STR, 226 pp.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Philips, , and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124.

    • Search Google Scholar
    • Export Citation
  • Gu, D., , and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and the extratropics. Science, 275, 805807.

    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., , and S. Manabe, 1975: The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci., 32, 15151541.

  • Holland, G. L., 2009: Predicting El Niño’s impacts. Science, 325, 47.

  • Hu, Z.-Z., , and B. H. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065.

    • Search Google Scholar
    • Export Citation
  • Johnstone, J. A., , and T. E. Dawson, 2010: Climatic context and ecological implications of summer fog decline in the coast redwood region. Proc. Natl. Acad. Sci. USA, 107 (10), 45334538, doi:10.1073/pnas.0915062107.

    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., , and R. V. Andreoli, 2007: Relations of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. Int. J. Climatol., 27, 531540.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., , and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Quart. J. Roy. Meteor. Soc., 126, 213239.

  • Kushnir, Y., , and N. C. Lau, 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on time scale and pattern polarity. J. Climate, 5, 271283.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., 1992: East Asian summer monsoon rainfall variability and climate teleconnection. J. Meteor. Soc. Japan, 70, 211241.

  • Lau, K.-M., , J. Y. Lee, , K. M. Kim, , and I. S. Kang, 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17, 819833.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 2001: Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical air–sea interaction. J. Climate, 14, 28462866.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , B. J. Hoskins, , and M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85B, 119.

    • Search Google Scholar
    • Export Citation
  • Luksch, U., , H. V. Storch, , and E. Maier-Reimer, 1990: Modeling North Pacific SST anomalies as a response to anomalous atmospheric forcing. J. Mar. Syst., 1, 155168.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , M. A. Palecki, , and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , S. E. Zebiak, , and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745.

  • Meehl, G. A., 1994: Coupled land-ocean-atmosphere processes and South Asian monsoon variability. Science, 266, 263267.

  • Nan, S., , P. Zhao, , S. Yang, , and J. Chen, 2009: Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J. Geophys. Res., 114, D10104, doi:10.1029/2008JD011559.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F. F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Hulme, , and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part I: Development of a 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857.

    • Search Google Scholar
    • Export Citation
  • Ose, T., 1996: The comparison of the simulated response to the regional snow mass anomalies over Tibet, Eastern Europe, and Siberia. J. Meteor. Soc. Japan, 74, 845866.

    • Search Google Scholar
    • Export Citation
  • Paegle, J. N., , and K. C. Mo, 2002: Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J. Climate, 15, 13891407.

    • Search Google Scholar
    • Export Citation
  • Peng, S., , W. A. Robinson, , and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., 1991: Observational aspects of ENSO cycle teleconnections. Teleconnections Linking Worldwide Climate Anomalies, M. H. Glantz, R. W. Katz, and N. Nichols, Eds., Cambridge University Press, 309–343.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: A global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., , and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373.

  • Shakun, J. D., , and J. Shaman, 2009: Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett., 36, L19711, doi:10.1029/2009GL040313.

    • Search Google Scholar
    • Export Citation
  • Siegert, F., , G. Ruecker, , A. Hinrichs, , and A. A. Hoffmann, 2001: Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437440.

    • Search Google Scholar
    • Export Citation
  • Smith, R., , and P. Gent, 2002: Reference manual for the Parallel Ocean Program (POP): Ocean component of the Community Climate System Model (CCSM2.0). LAUR-02-2484, 76 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm3.0/pop/doc/popmanual.ps.]

    • Search Google Scholar
    • Export Citation
  • Song, J. H., , H. S. Kang, , Y. H. Byun, , and S. Y. Hong, 2010: Effects of the Tibetan Plateau on the Asian summer monsoon: A numerical case study using a regional climate model. Int. J. Climatol., 30, 743759.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., , N. Iwasaka, , K. Hanawa, , and Y. Toba, 1993: Characteristic variations of sea surface temperature with multiple time scales in the North Pacific. J. Climate, 6, 11531160.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., , and J. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vimont, D. J., , D. S. Battisti, , and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , J. M. Wallace, , and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675.

    • Search Google Scholar
    • Export Citation
  • Wainer, I., , and P. J. Webster, 1996: Monsoon-ENSO interaction using a simple coupled ocean-atmosphere model. J. Geophys. Res., 101, 25 59925 614.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926.

  • Wu, R., , and J. L. Kinter III, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. J. Geophys. Res., 115, D06101, doi:10.1029/2009JD012579.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and J. C. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. J. Climate, 14, 418433.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and K.-M. Lau, 1998: Influences of SST and ground wetness anomalies on the Asian summer monsoon. J. Climate, 11, 32303246.

  • Yang, S., , K.-M. Lau, , S.-H. Yoo, , J. L. Kinter, , K. Miyakoda, , and C.-H. Ho, 2004: Upstream subtropical signals preceding the Asian summer monsoon circulation. J. Climate, 17, 42134229.

    • Search Google Scholar
    • Export Citation
  • Ye, D. Z., 1981: Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 1419.

    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., 1982: Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation. Arch. Meteor. Geophys. Bioklimatol., 31A, 205220.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

  • Zhao, P., , Y. N. Zhu, , and R. H. Zhang, 2007: An Asian–Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dyn., 29, 293303.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., , Z. H. Cao, , and J. M. Chen, 2010a: A summer teleconnection pattern over the extratropical Northern Hemisphere and associated mechanisms. Climate Dyn., 35, 523534.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., , S. Yang, , and R. Yu, 2010b: Long-term changes in rainfall over Eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23, 15441562.

    • Search Google Scholar
    • Export Citation
  • Zhou, B. T., , P. Zhao, , and X. Cui, 2010: Linkage between the Asian-Pacific Oscillation and the sea surface temperature in the North Pacific. Chin. Sci. Bull., 55, 11931198.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 1
PDF Downloads 14 14 11

Relative Controls of Asian–Pacific Summer Climate by Asian Land and Tropical–North Pacific Sea Surface Temperature

View More View Less
  • 1 State Key Laboratory of Severe Weather, and National Meteorological Information Center, China Meteorological Administration, Beijing, China
  • | 2 NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland
  • | 3 Department of Atmospheric Sciences, Zhongshan University, Guangzhou, China
  • | 4 Chinese Academy of Meteorological Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The dominant pattern of summertime tropical and North Pacific sea surface temperature (SST) is characterized by an out-of-phase relationship between the tropics and the extratropics. This pattern, defined as the tropical–North Pacific mode (TNPM) in this study, is closely correlated with the variability of climate over Asia and the Pacific Ocean. A high TNPM index, with positive (negative) SST anomalies over the extratropics (tropics) of the Pacific, is linked to deep negative anomalies of tropospheric temperature over the extratropical Pacific, with shallow positive anomalies in the lower troposphere, and is also linked to deep positive temperature over Asia. It is also found that these anomalies of tropospheric temperature and SST are significantly related to the Asian–Pacific Oscillation (APO), an extratropical zonal–vertical atmospheric pattern connecting Asia and the Pacific. Indeed, when the variability of APO is removed, the above-described climate anomalies weaken significantly. Although the above relationships observed between atmospheric circulation and SST can be captured by general circulation models, sensitivity experiments show that the variations of summertime Asian–Pacific atmospheric circulation may not be mainly forced by the Pacific SST. Instead, the Asian land elevated heating seems to play a more important role in generating the climate anomalies, as shown by model-sensitivity experiments in which changes in topographic height are included. Moreover, the relative importance of Asian land and Pacific SST for the variations of Asian–Pacific climate in summer and winter is compared in this study. In winter the most dominant mode of Pacific SST exerts a stronger impact on the Asian–Pacific climate.

Corresponding author address: Dr. Ping Zhao, National Meteorological Information Centre, China Meteorological Administration, Beijing 100081, China. E-mail: zhaop@cma.gov.cn

Abstract

The dominant pattern of summertime tropical and North Pacific sea surface temperature (SST) is characterized by an out-of-phase relationship between the tropics and the extratropics. This pattern, defined as the tropical–North Pacific mode (TNPM) in this study, is closely correlated with the variability of climate over Asia and the Pacific Ocean. A high TNPM index, with positive (negative) SST anomalies over the extratropics (tropics) of the Pacific, is linked to deep negative anomalies of tropospheric temperature over the extratropical Pacific, with shallow positive anomalies in the lower troposphere, and is also linked to deep positive temperature over Asia. It is also found that these anomalies of tropospheric temperature and SST are significantly related to the Asian–Pacific Oscillation (APO), an extratropical zonal–vertical atmospheric pattern connecting Asia and the Pacific. Indeed, when the variability of APO is removed, the above-described climate anomalies weaken significantly. Although the above relationships observed between atmospheric circulation and SST can be captured by general circulation models, sensitivity experiments show that the variations of summertime Asian–Pacific atmospheric circulation may not be mainly forced by the Pacific SST. Instead, the Asian land elevated heating seems to play a more important role in generating the climate anomalies, as shown by model-sensitivity experiments in which changes in topographic height are included. Moreover, the relative importance of Asian land and Pacific SST for the variations of Asian–Pacific climate in summer and winter is compared in this study. In winter the most dominant mode of Pacific SST exerts a stronger impact on the Asian–Pacific climate.

Corresponding author address: Dr. Ping Zhao, National Meteorological Information Centre, China Meteorological Administration, Beijing 100081, China. E-mail: zhaop@cma.gov.cn
Save