• Bretherton, C. S., , M. Widmann, , V. P. Dymnikov, , J. M. Wallace, , and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , K. A. Dahl, , and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Chen, J. Y., , B. E. Carlson, , and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838841.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., , and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527.

  • Enfield, D. B., , A. M. Mestas-Nuñez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , V. Krishnamurthy, , and H. Annmalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633.

    • Search Google Scholar
    • Export Citation
  • Hare, S. R., , and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103145.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hou, A. Y., , and R. S. Lindzen, 1992: The influence of concentrated heating on the Hadley circulation. J. Atmos. Sci., 49, 12331241.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11, 22732296.

    • Search Google Scholar
    • Export Citation
  • Lamb, P. J., 1982: Persistence of Subsaharan drought. Nature, 299, 4648.

  • Li, J., 2001: Atlas of Climate of Global Atmospheric Circulation I (in Chinese). China Meteorology Press, 279 pp.

  • Li, J., , and Q. Zeng, 2000: Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon. Sci. China, 43D, 646653.

    • Search Google Scholar
    • Export Citation
  • Li, J., , and Q. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, doi:10.1029/2001GL013874.

  • Li, J., , and Q. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302.

    • Search Google Scholar
    • Export Citation
  • Li, J., , and Q. Zeng, 2005: A new monsoon index, its interannual variability and relation with monsoon precipitation. Climatic Environ. Res., 10, 351365.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , C. Deser, , and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi:10.1029/2008GL036076.

    • Search Google Scholar
    • Export Citation
  • Ma, J., , and J. Li, 2007: Strengthening of the boreal winter Hadley circulation and its connection with ENSO. Prog. Nat. Sci., 17, 13271333.

    • Search Google Scholar
    • Export Citation
  • Ma, J., , and J. Li, 2008: The principal modes of variability of the boreal winter Hadley cell. Geophys. Res. Lett., 35, L01808, doi:10.1029/2007GL031883.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., , and A. C. Clement, 2009: Simulated variability in the mean atmospheric meridional circulation over the 20th century. Geophys. Res. Lett., 36, L06704, doi:10.1029/2008GL036741.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., , and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32, L03809, doi:10.1029/2004GL021765.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., , and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., , B. Somé, , and B. Kone, 2000: An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Niño and the 1998 La Niña years. J. Climate, 13, 26282640.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425445.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones. Part II: Sensitivity to meridional SST distribution. J. Atmos. Sci., 52, 11281141.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Oort, A. H., , and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 27512767.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Quan, X.-W., , H. F. Diaz, , and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Past, Present, and Future, H. F. Diaz and R. S. Bradley, Eds., Cambridge University Press, 85–120.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 15511556.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688.

  • Tanaka, H. L., , N. Ishizaki, , and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A, 250269.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376386.

  • Wu, R., , and S.-P. Xie, 2003: On equatorial Pacific surface wind changes around 1977: NCEP–NCAR reanalysis versus COADS observations. J. Climate, 16, 167173.

    • Search Google Scholar
    • Export Citation
  • Zhao, H. X., , and G. W. K. Moore, 2008: Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century. Int. J. Climatol., 28, 563578.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 5
PDF Downloads 16 16 5

Regime Change of the Boreal Summer Hadley Circulation and Its Connection with the Tropical SST

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and National Meteorological Centre, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

The year-to-year variability of the boreal summer [June–August (JJA)] Hadley circulation (HC) is dominated by an asymmetric mode centered in the Northern Hemisphere (AMN) and a quasi-symmetric mode centered at 5°N (QSM). The regime change of the JJA HC is revealed by the phase reversal of the time series of the AMN, showing significant weakening of the northern part of the JJA HC and a reversed seesaw relationship of the zonal-mean updraft over 10°–20°N and around the equator. This transition is accompanied by the southward retreat of the HC core and is well correlated with the weakening of tropical summer monsoons. The strong warming trends of the sea surface temperature over the tropical Atlantic and Indo–west Pacific warm pool play an important role in the regime change of the JJA HC. The high-frequency interannual variability of the JJA HC, however, is mainly featured by the QSM and is highly correlated with the Niño-3.4 index, implying that ENSO’s influence is mainly on the high-frequency interannual time scale.

Corresponding author address: Dr. Jianping Li, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. E-mail: ljp@lasg.iap.ac.cn

Abstract

The year-to-year variability of the boreal summer [June–August (JJA)] Hadley circulation (HC) is dominated by an asymmetric mode centered in the Northern Hemisphere (AMN) and a quasi-symmetric mode centered at 5°N (QSM). The regime change of the JJA HC is revealed by the phase reversal of the time series of the AMN, showing significant weakening of the northern part of the JJA HC and a reversed seesaw relationship of the zonal-mean updraft over 10°–20°N and around the equator. This transition is accompanied by the southward retreat of the HC core and is well correlated with the weakening of tropical summer monsoons. The strong warming trends of the sea surface temperature over the tropical Atlantic and Indo–west Pacific warm pool play an important role in the regime change of the JJA HC. The high-frequency interannual variability of the JJA HC, however, is mainly featured by the QSM and is highly correlated with the Niño-3.4 index, implying that ENSO’s influence is mainly on the high-frequency interannual time scale.

Corresponding author address: Dr. Jianping Li, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. E-mail: ljp@lasg.iap.ac.cn
Save