• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., , and T. J. Ansell, 2006: A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J. Climate, 19, 58165842.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , J.-S. Kug, , A. Timmermann, , I.-S. Kang, , and O. Timm, 2007: The influence of ENSO on the generation of decadal variability in the North Pacific. J. Climate, 20, 667680.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., , J. E. Cole, , M. N. Evans, , H. Barnett, , N. J. Abram, , A. W. Tudhope, , and B. K. Linsley, 2009: Intensified decadal variability in tropical climate during the late 19th century. Geophys. Res. Lett., 36, L08602, doi:10.1029/2008GL036924.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , D. W. Pierce, , M. Latif, , D. Dommenget, , and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys. Res. Lett., 26, 615618.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Cane, M. A., , and E. S. Sarachik, 1977: Forced baroclinic ocean motions. Part II: The linear equatorial bounded case. J. Mar. Res., 35, 395432.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Climate, 19, 51225174.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Zhang, , R. Saravanan, , D. J. Vimont, , J. C. H. Chiang, , L. Ji, , H. Seidel, , and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, doi:10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The “tilt” and “warm water volume” modes. J. Phys. Oceanogr., 40, 121137.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196.

  • Clement, A. C., , R. Seager, , and R. Murtugudde, 2005: Why are there tropical warm pools? J. Climate, 18, 52945311.

  • Clement, A. C., , R. Burgman, , and J. Norris, 2009: Model and observational evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Phillips, , and J. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and North Pacific during boreal winter since 1900. J. Climate, 17, 31093128.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Capotondi, , R. Saravanan, , and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , and M. A. Alexander, 2010a: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , V. Bourdette, , and H. Teng, 2010b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and J. D. Neelin, 1995: Ocean–atmosphere interaction and the tropical climatology. Part II: Why the Pacific cold tongue is in the east. J. Climate, 8, 13431359.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. Clement, , G. Vecchi, , B. Soden, , B. Kirtman, , and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. Clement, , and G. Vecchi, 2010: Tropical Pacific climate change: Reconciling models and observations. Eos, Trans. Amer. Geophys. Union, 91, 141142.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2010: A slab ocean El Nino. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888.

  • Dommenget, D., , and M. Latif, 2008: Generation of hyper climate modes. Geophys. Res. Lett., 35, L02706, doi:10.1029/2007GL031087.

  • Du, Y., , and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and K. Hasselmann, 1977: Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus, 29, 284305.

    • Search Google Scholar
    • Export Citation
  • Gu, D., , and S. G. H. Philander, 1997: Internal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, doi:10.1007/s00382-005-0084-6.

    • Search Google Scholar
    • Export Citation
  • Hameed, S., , K. R. Sperber, , and R. D. Cess, 1989: Genesis of the Southern Oscillation in the atmosphere: Illustration with global general circulation models. Geophys. Res. Lett., 16, 691694.

    • Search Google Scholar
    • Export Citation
  • Hare, S. R., , and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103145.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., , and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc., 103, 7792.

  • Hazeleger, W., , R. Seager, , M. Visbeck, , N. Naik, , and K. Rodgers, 2001: Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr., 31, 616636.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., , C. Severijns, , R. Seager, , and F. Molteni, 2005: Tropical Pacific-driven decadal energy transport variability. J. Climate, 18, 20372051.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., , T. J. Osborn, , and T. C. Collins, 1998: Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations. Geophys. Res. Lett., 25, 33793382.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829.

  • Jin, F.-F., , and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50, 34773503.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , Z.-Z. Hu, , M. Latif, , L. Bengtsson, and E. Roeckner, 2001: Dynamical and cloud–radiation feedbacks in El Niño and greenhouse warming. Geophys. Res. Lett., 28, 15391542.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A., , and M. Cane, 2002: Tropical Pacific 1976–77 climate shift in a linear, wind-driven model. J. Phys. Oceanogr., 32, 23502360.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., , T. Motoi, , and H. Koide, 1999: SST variability and its mechanism in a coupled atmosphere–mixed-layer ocean model. J. Climate, 12, 12211239.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., , C. Deser, , and C. Cassou, 2010: Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio current extension. Climate Dyn., doi:10.1007/s00382-010-0764-8.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., , A. Kaplan, , Y. Gouriou, , J. Salinger, , P. B. deMenocal, , G. M. Wellington, , and S. S. Howe, 2006: Tracking the extent of the South Pacific convergence zone since the early 1600s. Geochem. Geophys. Geosyst., 7, Q05003, doi:10.1029/2005GC001115.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., , E. Guilyardi, , and H. Weller, 2010: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., doi:10.1007/s00382-010-0895-y.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50–70-year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686.

  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584606.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F.-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 (C7), 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Park, S., , C. Deser, , and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18, 45824599.

    • Search Google Scholar
    • Export Citation
  • Penland, C., , and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024.

  • Peterson, W. T., , and F. B. Schwing, 2003: A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett., 30, 1896, doi:10.1029/2003GL017528.

    • Search Google Scholar
    • Export Citation
  • Philip, S. Y., , and G. J. van Oldenborgh, 2009: Significant atmospheric nonlinearities in the ENSO cycle. J. Climate, 22, 40144028.

  • Pierce, D. W., , T. P. Barnett, , and M. Latif, 2000: Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J. Climate, 13, 11731194.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., , T. P. Barnett, , N. Schneider, , R. Saravanan, , D. Dommenget, , and M. Latif, 2001: The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dyn., 18, 5170.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Riedinger, M. A., , M. Steinitz-Kannan, , W. M. Last, , and M. Brenner, 2002: A ~6100 14C yr record of El Niño activity from the Galápagos Islands. J. Paleolimnol., 27, 17.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., , P. Friederichs, , and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulation of ENSO. J. Climate, 17, 37613774.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., , and P. Chang, 2000: Interactions between the Pacific ENSO and tropical Atlantic climate variability. J. Climate, 13, 21772194.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , R. Murtugudde, , N. Naik, , A. C. Clement, , N. Gordon, , and J. Miller, 2003: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 19481966.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , C. Herweijer, , N. Naik, , and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Terray, P., 2010: Southern Hemisphere extratropical forcing: A new paradigm for El Niño–Southern Oscillation. Climate Dyn., doi:10.1007/s00382-010-0825-z.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365.

    • Search Google Scholar
    • Export Citation
  • Troupe, A. J., 1965: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91, 490506.

  • Van Loon, H., , and D. J. Shea, 1985: The Southern Oscillation. Part IV. The precursors south of 15°S to the extremes of the oscillation. Mon. Wea. Rev., 113, 20632074.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., , S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195.

  • Vecchi, G. A., , and B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , J. M. Wallace, , and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675.

    • Search Google Scholar
    • Export Citation
  • Walker, G., 1924: Correlations in seasonal variations in weather IX: A further study of world weather. Mem. Ind. Meteor. Dept., 24, 275322.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , and B. P. Kirtman, 2006: Origin of decadal El Niño–Southern Oscillation-like variability in a coupled general circulation model. J. Geophys. Res., 111, C01009, doi:10.1029/2005JC002985.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Nino–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

  • Zhou, Z., , and J. A. Carton, 1998: Latent heat flux and interannual variability of the coupled atmosphere–ocean system. J. Atmos. Sci., 55, 494501.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 6
PDF Downloads 39 39 7

Rethinking the Ocean’s Role in the Southern Oscillation

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Rosenstiel School of Marine and Atmospheric Science, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The Southern Oscillation (SO) is usually described as the atmospheric component of the dynamically coupled El Niño–Southern Oscillation phenomenon. The contention in this work, however, is that dynamical coupling is not required to produce the SO. Simulations with atmospheric general circulation models that have varying degrees of coupling to the ocean are used to show that the SO emerges as a dominant mode of variability if the atmosphere and ocean are coupled only through heat and moisture fluxes. Herein this mode of variability is called the thermally coupled Walker (TCW) mode. It is a robust feature of simulations with atmospheric general circulation models (GCMs) coupled to simple ocean mixed layers. Despite the absence of interactive ocean dynamics in these simulations, the spatial patterns of sea level pressure, surface temperature, and precipitation variability associated with the TCW are remarkably realistic. This mode has a red spectrum indicating persistence on interannual to decadal time scales that appears to arise through an off-equatorial trade wind–evaporation–surface temperature feedback and cloud shortwave radiative effects in the central Pacific. When dynamically coupled to the ocean (in fully coupled ocean–atmosphere GCMs), the main change to this mode is increased interannual variability in the eastern equatorial Pacific sea surface temperature and teleconnections in the North Pacific and equatorial Atlantic, though not all coupled GCMs simulate this effect.

Despite the oversimplification due to the lack of interactive ocean dynamics, the physical mechanisms leading to the TCW should be active in the actual climate system. Moreover, the robustness and realism of the spatial patterns of this mode suggest that the physics of the TCW can explain some of the primary features of observed interannual and decadal variability in the Pacific and the associated global teleconnections.

Corresponding author address: Amy Clement, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: aclement@rsmas.miami.edu

Abstract

The Southern Oscillation (SO) is usually described as the atmospheric component of the dynamically coupled El Niño–Southern Oscillation phenomenon. The contention in this work, however, is that dynamical coupling is not required to produce the SO. Simulations with atmospheric general circulation models that have varying degrees of coupling to the ocean are used to show that the SO emerges as a dominant mode of variability if the atmosphere and ocean are coupled only through heat and moisture fluxes. Herein this mode of variability is called the thermally coupled Walker (TCW) mode. It is a robust feature of simulations with atmospheric general circulation models (GCMs) coupled to simple ocean mixed layers. Despite the absence of interactive ocean dynamics in these simulations, the spatial patterns of sea level pressure, surface temperature, and precipitation variability associated with the TCW are remarkably realistic. This mode has a red spectrum indicating persistence on interannual to decadal time scales that appears to arise through an off-equatorial trade wind–evaporation–surface temperature feedback and cloud shortwave radiative effects in the central Pacific. When dynamically coupled to the ocean (in fully coupled ocean–atmosphere GCMs), the main change to this mode is increased interannual variability in the eastern equatorial Pacific sea surface temperature and teleconnections in the North Pacific and equatorial Atlantic, though not all coupled GCMs simulate this effect.

Despite the oversimplification due to the lack of interactive ocean dynamics, the physical mechanisms leading to the TCW should be active in the actual climate system. Moreover, the robustness and realism of the spatial patterns of this mode suggest that the physics of the TCW can explain some of the primary features of observed interannual and decadal variability in the Pacific and the associated global teleconnections.

Corresponding author address: Amy Clement, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: aclement@rsmas.miami.edu
Save