• Alexander, M. J., , and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and C. Barnet, 2007: Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64, 16521665.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity wave effects in climate models and the global distribution of gravity wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., , R. R. Garcia, , B. A. Boville, , and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Charron, M., , and E. Manzini, 2002: Gravity waves from fronts: parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , D. R. Marsh, , D. E. Kinnison, , B. A. Boville, , and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Gong, J., , M. A. Geller, , and L. Wang, 2008: Source spectra information derived from U.S. high-resolution radiosonde data. J. Geophys. Res., 113, D10106, doi:10.1029/2007JD009252.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., , E. K. M. Chang, , and S. S. Leroy, 2009: How strong are the Southern Hemisphere storm tracks? Geophys. Res. Lett., 36, L22806, doi:10.1029/2009GL040733.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol. Terr. Phys., 59, 371386.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl. Geophys., 118, 284306.

    • Search Google Scholar
    • Export Citation
  • Leovy, C. B., 1964: Simple models of thermally driven mesospheric circulation. J. Atmos. Sci., 21, 327341.

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714.

  • Lott, F., , and M. J. Miller, 1997: A new subgrid-scale orographic gravity wave parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , and J. F. Scinocca, 2005: The GCM response to current parameterizations of non-orographic gravity wave drag. J. Atmos. Sci., 62, 23942413.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., , and N. M. Gavrilov, 1995: The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere. J. Atmos. Terr. Phys., 57, 12211231.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , G. J. Shutts, , and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011031.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and F. Zhang, 2007: On the forcing of inertia–gravity waves by synoptic scale flows. J. Atmos. Sci., 64, 17371742.

  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , R. Suozzo, , N. K. Balachandran, , A. Lacis, , and G. Russell, 1988: The GISS global climate–middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45, 329370.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS Model E: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., , and D. F. Strobel, 1978: The zonally averaged circulation of the middle atmosphere. J. Atmos. Sci., 35, 577591.

  • Scinocca, J. F., , and N. A. McFarlane, 2000: The parameterization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: Technical note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: implications for climate models. J. Atmos. Sci., 64, 190203.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , M. Sigmond, , and T. G. Shepherd, 2009: Sensitivity of simulated climate to conservation of momentum in gravity wave parameterization. J. Climate, 22, 27262742.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., , and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61, 28992908.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., , K. Semeniuk, , and J. N. Koshyk, 1996: Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res., 101, 23 44723 464.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., , M. Nishida, , C. Rocken, , and R. H. Ware, 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105, 72577727.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , and M. A. Geller, 2003: Morphology of gravity wave energy as observed from four years (1998–2001) of high resolution U.S. radiosonde data. J. Geophys. Res., 108, 4489, doi:10.1029/2002JD002786.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and F. Zhang, 2010: Sources of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci., 67, 14381455.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., , and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , M. Takahashi, , and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113, D12110, doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 19
PDF Downloads 39 39 8

New Gravity Wave Treatments for GISS Climate Models

View More View Less
  • 1 Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, New York
  • | 2 NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York
  • | 3 NASA Goddard Institute for Space Studies, and SGT, Inc., New York, New York
  • | 4 NASA Goddard Institute for Space Studies, New York, New York, and Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

Current affiliation: Global Systems Division, NOAA Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: M. A. Geller, Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY 11794-5000. E-mail: marvin.geller@sunysb.edu

Abstract

Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

Current affiliation: Global Systems Division, NOAA Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: M. A. Geller, Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY 11794-5000. E-mail: marvin.geller@sunysb.edu
Save