• Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434.

    • Search Google Scholar
    • Export Citation
  • Berg, A. A., , J. S. Famiglietti, , J. P. Walker, , and P. R. Houser, 2003: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res., 108, 4490, doi:10.1029/2002JD003334.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , J. H. Ball, , M. Bosilovich, , P. Viterbo, , Y. Zhang, , and W. B. Rossow, 2003: Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res., 108, 8618, doi:10.1029/2002JD003127.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , M. Zhao, , P. A. Dirmeyer, , and A. C. M. Beljaars, 2006: Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res., 111, D22S04, doi:10.1029/2006JD007174.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system—Version 4. NASA GSFC Tech. Rep. Series on Global Modeling and Data Assimilation 104606, Vol. 26, 187 pp.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , J. Chen, , F. R. Robertson, , and R. F. Adler, 2008: Evaluation of global precipitation in reanalysis. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , F. R. Robertson, , and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, in press.

  • Cherkauer, K. A., , L. C. Bowling, , and D. P. Lettenmaier, 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38, 151159.

    • Search Google Scholar
    • Export Citation
  • Churkina, G., , S. W. Running, , and A. L. Schloss, 1999: Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Global Change Biol., 5, 4655.

    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., , M. C. Hansen, , J. R. G. Townshend, , and R. S. Sohlberg, 1998: Global land cover classifications at 8-km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens., 19, 31413168.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Z. Guo, , and G. Xiang, 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5, 10111033.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., , J. P. Walker, , P. J. Steinle, , R. de Jeu, , and T. Holmes, 2009: An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ., 113, 703710.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716.

  • Epstein, H. E., , M. P. Calef, , M. D. Walker, , F. S. Chapin, , and A. M. Starfield, 2004: Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biol., 10, 13251334.

    • Search Google Scholar
    • Export Citation
  • Griffis, T. J., , T. A. Black, , D. Gaumont-Guay, , G. B. Drewitt, , Z. Nesic, , A. G. Barr, , K. Morgenstern, , and N. Kljun, 2004: Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agric. For. Meteor., 125, 207223.

    • Search Google Scholar
    • Export Citation
  • Jolly, W., , R. R. Nemani, , and S. W. Runnning, 2005: A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biol., 11, 619632.

    • Search Google Scholar
    • Export Citation
  • Jones, L. A., , J. S. Kimball, , K. C. McDonald, , S. K. Chan, , E. G. Njoku, , and W. C. Oechel, 2007: Satellite microwave remote sensing of boreal and Arctic soil temperatures from AMSR-E. IEEE Trans. Geosci. Remote Sens., 45, 20042018.

    • Search Google Scholar
    • Export Citation
  • Jones, L. A., , J. S. Kimball, , E. Podest, , K. C. McDonald, , S. K. Chan, , and E. G. Njoku, 2009: A method for deriving land surface moisture, vegetation, and open water fraction from AMSRE. Proc. IEEE Int. Geosci. Remote Sensing Symp. IGARSS ’09, Cape Town, South Africa, IEEE, 916–919, doi:10.1109/IGARSS.2009.5417921.

    • Search Google Scholar
    • Export Citation
  • Jones, L. A., , C. R. Ferguson, , J. S. Kimball, , K. Zhang, , S. K. Chan, , K. C. McDonald, , E. G. Njoku, , and E. F. Wood, 2010: Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 111123.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., , S. W. Running, , and R. R. Nemani, 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85, 8798.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., , L. A. Jones, , K. Zhang, , F. A. Heinsch, , K. C. McDonald, , and W. C. Oechel, 2009: A satellite approach to estimate land-atmosphere CO2 exchange for boreal and arctic biomes using MODIS and AMSR-E. IEEE Trans. Geosci. Remote Sens., 47, 569587.

    • Search Google Scholar
    • Export Citation
  • Knowles, K., cited 2001: EASE-Grid elevation data resampled from the Global Land One-km Base Elevation (GLOBE) project. National Snow and Ice Data Center. [Available online at http://www.ngdc.noaa.gov/mgg/topo/report/globedocumentationmanual.pdf.]

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , M. J. Suárez, , A. Ducharne, , M. Stieglitz, , and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a GCM. Part 1: Model structure. J. Geophys. Res., 105, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Z. Guo, , R. Yang, , P. A. Dirmeyer, , K. Mitchell, , and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335.

    • Search Google Scholar
    • Export Citation
  • Li, H., , A. Robock, , S. Liu, , X. Mo, , and P. Viterbo, 2005: Evaluation of reanalysis soil moisture simulation using updated Chinese soil moisture observations. J. Hydrometeor., 6, 180193.

    • Search Google Scholar
    • Export Citation
  • Ma, L., , T. Zhang, , Q. Li, , O. W. Frauenfeld, , and D. Qin, 2008: Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based temperatures in China. J. Geophys. Res., 113, D15115, doi:10.1029/2007JD009549.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., , L. A. Jones, , J. S. Kimball, , K. C. McDonald, , and S. W. Running, 2009: Satellite assessment of land surface evapotranspiration for the pan-Arctic domain. Water Resour. Res., 45, W09420, doi:10.1029/2008WR007189.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , T. J. Jackson, , V. Lakshmi, , T. K. Chan, , and S. N. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 215229.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , P. Ashcroft, , T. K. Chan, , and L. Li, 2005: Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens., 43, 938947.

    • Search Google Scholar
    • Export Citation
  • Owe, M., , R. De Jeu, , and J. P. Walker, 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39, 16431654.

    • Search Google Scholar
    • Export Citation
  • Owe, M., , R. De Jeu, , and T. Holmes, 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., , and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., and Coauthors, 2009: Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Global Change Biol., 15, 24622484.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, doi:10.1029/2004GL020938.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , R. D. Koster, , J. Dong, , and A. A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Coauthors, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, in press.

  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1 and 5.1.0. NASA GSFC Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2007-104606, Vol. 27, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Running, S. W., , R. R. Nemani, , F. A. Heinsch, , M. Zhao, , M. Reeves, , and H. Hashimoto, 2004: A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54, 547560.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., , T. Holmes, , R. de Jeu, , V. Naeimi, , and W. Wagner, 2008: A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett., 35, L24403, doi:10.1029/2008GL035599.

    • Search Google Scholar
    • Export Citation
  • Scott, R. L., , G. D. Jenerette, , D. L. Potts, , and T. E. Huxman, 2009: Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res., 114, G04004, doi:10.1029/2008JG000900.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , G. Goteti, , and E. F. Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., , A. Ducharne, , R. Koster, , and M. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242.

    • Search Google Scholar
    • Export Citation
  • Suni, T., and Coauthors, 2003: Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996-2001. Boreal Environ. Res., 8, 287301.

    • Search Google Scholar
    • Export Citation
  • Takala, M., , J. Pulliainen, , S. J. Metsamaki, , and J. T. Koskinen, 2009: Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans. Geosci. Remote Sens., 47, 29963007.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , R. T. Pinker, , Y. Ma, , T. Koike, , M. M. Wonsick, , S. J. Cox, , Y. Zhang, , and P. Stackhouse, 2008: Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau. J. Geophys. Res., 113, D17204, doi:10.1029/2007JD009736.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., , J. S. Kimball, , Q. Mu, , L. A. Jones, , S. J. Goetz, , and S. W. Running, 2009: Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol., 379, 92110.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , F. A. Heinsch, , R. R. Nemani, , and S. W. Running, 2005: Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ., 95, 164176.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , S. W. Running, , and R. R. Nemani, 2006: Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalysis. J. Geophys. Res., 111, G01002, doi:10.1029/2004JG000004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 18
PDF Downloads 50 50 12

Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission

View More View Less
  • 1 Flathead Lake Biological Station, The University of Montana, Polson, and Numerical Terradynamic Simulation Group, The University of Montana, Missoula, Montana
  • | 2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (Tmax) and minimum (Tmin) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for Tmin and Tmax) and drier (~50 Pa for VPD) for low- and middle-latitude regions (<50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (>3°C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0–2-cm depth) and two AMSR-E products (~0–1-cm depth) are moderately correlated (R ~ 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 ± 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study’s results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze–thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze–thaw state and surface soil moisture with 2–3-day temporal fidelity and enhanced (≤9 km) spatial resolution.

Corresponding author address: Yonghong Yi, Flathead Lake Biological Station, The University of Montana, 32135 Biostation Lane, Polson, MT 59860-9569. E-mail: yonghong.yi@ntsg.umt.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Abstract

The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (Tmax) and minimum (Tmin) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for Tmin and Tmax) and drier (~50 Pa for VPD) for low- and middle-latitude regions (<50°N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (>3°C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0–2-cm depth) and two AMSR-E products (~0–1-cm depth) are moderately correlated (R ~ 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 ± 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study’s results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze–thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze–thaw state and surface soil moisture with 2–3-day temporal fidelity and enhanced (≤9 km) spatial resolution.

Corresponding author address: Yonghong Yi, Flathead Lake Biological Station, The University of Montana, 32135 Biostation Lane, Polson, MT 59860-9569. E-mail: yonghong.yi@ntsg.umt.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Save