• Abatzoglou, J. T., 2010: Influence of the PNA on declining mountain snowpack in the western United States. Int. J. Climatol., 31, 11351142, doi:10.1002/joc.2137.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., , and K. T. Redmond, 2007: Asymmetry between trends in spring and autumn temperature and circulation regimes over western North America. Geophys. Res. Lett., 34, L18808, doi:10.1029/2007GL030891.

    • Search Google Scholar
    • Export Citation
  • Alley, W. M., 1984: The Palmer drought severity index—Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109.

  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083.

  • Betancourt, J., , M. Schwartz, , D. Breshears, , D. Cayan, , M. Dettinger, , D. Inouye, , E. Post, , and B. Reed, 2005: Implementing a U.S. National Phenology Network. Eos, Trans. Amer. Geophys. Union, 86, 51, doi:10.1029/2005EO510005.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and Coauthors, 2008: Detection and attribution of temperature changes in the mountainous western United States. J. Climate, 21, 64046424.

    • Search Google Scholar
    • Export Citation
  • Brown, J., , S. Li, , and N. Bhagabati, 1999: Long-term trend toward earlier breeding in an American bird: A response to global warming?. Proc. Natl. Acad. Sci. USA, 96, 55655569.

    • Search Google Scholar
    • Export Citation
  • Caprio, J. M., 1993: Western regional phenological summary of information on honeysuckle and lilac first bloom phase covering the period 1956–1991. Montana Agricultural Experiment Station State Climate Center Circular, No. 3, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , S. A. Kammerdiener, , M. D. Dettinger, , J. M. Caprio, , and D. H. Peterson, 2001: Changes in the onset of spring in the western United States. Bull. Amer. Meteor. Soc., 82, 399415.

    • Search Google Scholar
    • Export Citation
  • Das, T., and Coauthors, 2009: Structure and detectability of trends in hydrological measures over the western United States. J. Hydrometeor., 10, 871892.

    • Search Google Scholar
    • Export Citation
  • de Beurs, K. M., , and G. M. Henebry, 2008: Northern annular mode effects on the land surface phenologies of northern Eurasia. J. Climate, 21, 42574279.

    • Search Google Scholar
    • Export Citation
  • Forister, M., , and A. Shapiro, 2003: Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biol., 9, 11301135.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., , P. W. Mote, , M. P. Clark, , and D. P. Lettenmaier, 2007: Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. J. Climate, 20, 14681486.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., and Coauthors, 2009: Detection and attribution of streamflow timing changes to climate change in the western United States. J. Climate, 22, 38383855.

    • Search Google Scholar
    • Export Citation
  • Inouye, D. W., 2008: Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89, 353362.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , P. E. Ciesielski, , B. D. McNoldy, , P. J. Rogers, , and R. K. Taft, 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20, 16281648.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Karl, T. R., , J. M. Melillo, , and T. C. Peterson, Eds., 2009: Global Climate Change Impacts in the United States. Cambridge University Press, 188 pp.

    • Search Google Scholar
    • Export Citation
  • Littell, J. S., , D. McKenzie, , D. L. Peterson, , and A. L. Westerling, 2009: Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl., 19, 10031021.

    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., , and J. L. Russell, 2008: Northern annular mode impact on spring climate in the western United States. Geophys. Res. Lett., 35, L17701, doi:10.1029/2008GL034828.

    • Search Google Scholar
    • Export Citation
  • McCabe, G., , and M. Clark, 2005: Trends and variability in snowmelt runoff in the western United States. J. Hydrometeor., 6, 476482.

  • McKenzie, D., , Z. Gedalof, , D. Peterson, , and P. Mote, 2004: Climatic change, wildfire, and conservation. Conserv. Biol., 18, 890902.

  • Moore, R. D., , S. W. Fleming, , B. Menounos, , R. Wheate, , A. Fountain, , K. Stahl, , K. Holm, , and M. Jakob, 2009: Glacier change in western North America: Influences on hydrology, geomorphic hazards and water quality. Hydrol. Processes, 23, 4261.

    • Search Google Scholar
    • Export Citation
  • Mote, P., , A. Hamlet, , M. Clark, , and D. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Department of Commerce, Research Paper 45, 65 pp.

  • Parmesan, C., 2006: Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637669, doi:10.1146/annurev.ecolsys.37.091305.110100.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444.

  • Preisendorfer, R. W., , C. D. Mobley, , and T. P. Barnett, 1988: The principal discriminant method of prediction—Theory and evaluation. J. Geophys. Res., 93, 10 81510 830.

    • Search Google Scholar
    • Export Citation
  • Qian, T. T., , A. Dai, , K. E. Trenberth, , and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., , and J. M. Wallace, 2002: Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys. Res. Lett., 29, 2132, doi:10.1029/2002GL015807.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., , and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., 1985: The advance of phenological spring across eastern and central North America. Ph.D. thesis, University of Kansas, 85 pp.

  • Schwartz, M. D., 1992: Phenology and springtime surface layer change. Mon. Wea. Rev., 120, 25702578.

  • Schwartz, M. D., , and G. A. Marotz, 1986: An approach to examining regional atmosphere plant interactions with phenological data. J. Biogeogr., 13, 551560.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., , and G. A. Marotz, 1988: Synoptic events and spring phenology. Phys. Geogr., 9, 151161.

  • Schwartz, M. D., , and T. R. Karl, 1990: Spring phenology—Nature’s experiment to detect the effect of greenup on surface maximum temperatures. Mon. Wea. Rev., 118, 883890.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., , and B. E. Reiter, 2000: Changes in North American spring. Int. J. Climatol., 20, 929932.

  • Schwartz, M. D., , and X. Chen, 2002: Examining the onset of spring in China. Climate Res., 21, 157164.

  • Schwartz, M. D., , G. J. Carbone, , G. L. Reighard, , and W. R. Okie, 1997: A model to predict peach phenology and maturity using meteorological variables. HortScience, 32, 213216.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., , R. Ahas, , and A. Aasa, 2006: Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol., 12, 343351.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller, , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stenseth, N., , A. Mysterud, , G. Ottersen, , J. Hurrell, , K. Chan, , and M. Lima, 2002: Ecological effects of climate fluctuations. Science, 297, 12921296.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., , D. R. Cayan, , and M. D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589.

  • Thompson, D. W. J., , J. M. Wallace, , and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., , H. G. Hidalgo, , D. R. Cayan, , and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 9
PDF Downloads 38 38 5

Northern Hemisphere Modes of Variability and the Timing of Spring in Western North America

View More View Less
  • 1 The University of Arizona, Tucson, Arizona
  • | 2 U.S. Geological Survey, Bozeman, Montana
  • | 3 U.S. Geological Survey, Tucson, Arizona
  • | 4 University of Wisconsin—Milwaukee, Milwaukee, Wisconsin
© Get Permissions
Restricted access

Abstract

Spatial and temporal patterns of variability in spring onset are identified across western North America using a spring index (SI) model based on weather station minimum and maximum temperatures (Tmin and Tmax, respectively). Principal component analysis shows that two significant and independent patterns explain roughly half of the total variance in the timing of spring onset from 1920 to 2005. However, these patterns of spring onset do not appear to be linear responses to the primary modes of variability in the Northern Hemisphere: the Pacific–North American pattern (PNA) and the northern annular mode (NAM). Instead, over the period when reanalysis data and the spring index model overlap (1950–2005), the patterns of spring onset are local responses to the state of both the PNA and NAM, which together modulate the onset date of spring by 10–20 days on interannual time scales. They do so by controlling the number and intensity of warm days. There is also a regionwide trend in spring advancement of about −1.5 days decade−1 from 1950 to 2005. Trends in the NAM and PNA can only explain about one-third (−0.5 day decade−1) of this trend.

Corresponding author address: Toby R. Ault, Dept. of Geosciences, The University of Arizona, 1040 E. 4th St., Tucson, AZ 85701. E-mail: tault@email.arizona.edu

Abstract

Spatial and temporal patterns of variability in spring onset are identified across western North America using a spring index (SI) model based on weather station minimum and maximum temperatures (Tmin and Tmax, respectively). Principal component analysis shows that two significant and independent patterns explain roughly half of the total variance in the timing of spring onset from 1920 to 2005. However, these patterns of spring onset do not appear to be linear responses to the primary modes of variability in the Northern Hemisphere: the Pacific–North American pattern (PNA) and the northern annular mode (NAM). Instead, over the period when reanalysis data and the spring index model overlap (1950–2005), the patterns of spring onset are local responses to the state of both the PNA and NAM, which together modulate the onset date of spring by 10–20 days on interannual time scales. They do so by controlling the number and intensity of warm days. There is also a regionwide trend in spring advancement of about −1.5 days decade−1 from 1950 to 2005. Trends in the NAM and PNA can only explain about one-third (−0.5 day decade−1) of this trend.

Corresponding author address: Toby R. Ault, Dept. of Geosciences, The University of Arizona, 1040 E. 4th St., Tucson, AZ 85701. E-mail: tault@email.arizona.edu
Save