• Anapol’skaya, L., , and L. Gandin, 1958: Methodika opredeleniya raschetnykh skorostei vetradylia proektirovaniya vetrovykh nagruzok na stroitel’nye sooruzheniya. Meteor. Gidrol., 10, 917.

    • Search Google Scholar
    • Export Citation
  • Archer, C. L., , and M. Z. Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110, D12110, doi:10.1029/2004JD005462.

  • Baynes, C. J., 1974: The statistics of strong winds for engineering applications. Ph.D. thesis, University of Western Ontario, 266 pp.

  • Brooks, C. E. P., , C. S. Durst, , and N. Carruthers, 1946: Upper winds over the world. Part I. The frequency distribution of winds at a point in the free air. Quart. J. Roy. Meteor. Soc., 72, 5573.

    • Search Google Scholar
    • Export Citation
  • Burton, T., , D. Sharpe, , N. Jenkins, , and E. Bossanyi, 2001: Wind Energy Handbook. John Wiley, 617 pp.

  • Cakmur, R., , R. Miller, , and O. Torres, 2004: Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res., 109, D07201, doi:10.1029/2003JD004067.

    • Search Google Scholar
    • Export Citation
  • Capps, S. B., , and C. S. Zender, 2008: Observed and CAM3 GCM sea surface wind speed distributions: Characterization, comparison, and bias reduction. J. Climate, 21, 65696585.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and C. Deser, 1999: Diurnal and semidurnal variations in global surface wind and divergence fields. J. Geophys. Res., 104, 31 10931 125.

    • Search Google Scholar
    • Export Citation
  • Dinkelacker, O., 1949: Über spezielle windverteilungsfunktionen. Wetter Klima, 2, 129138.

  • Essenwanger, O., 1959: Probleme der windstatistik. Meteor. Rundsch., 12, 3747.

  • Fernando, H., , and J. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484.

  • Gardiner, C. W., 1997: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer, 442 pp.

  • Gastineau, G., , and B. Soden, 2009: Model projected changes of extreme wind events in response to global warming. Geophys. Res. Lett., 36, L10810, doi:10.1029/2009GL037500.

    • Search Google Scholar
    • Export Citation
  • He, Y., , A. H. Monahan, , C. G. Jones, , A. Dai, , S. Biner, , D. Caya, , and K. Winger, 2010: Probability distributions of land surface wind speeds over North America. J. Geophys. Res., 115, D04103, doi:10.1029/2008JD010708.

    • Search Google Scholar
    • Export Citation
  • Hennessey, J. P., 1977: Some aspects of wind power statistics. J. Appl. Meteor., 16, 119128.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kloeden, P. E., , and E. Platen, 1992: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 632 pp.

  • Li, M., , and X. Li, 2005: MEP-type distribution function: A better alternative to Weibull function for wind speed distributions. Renewable Energy, 30, 12211240.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1989: Intermittency of atmospheric turbulence. J. Atmos. Sci., 46, 7995.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396.

  • Mahrt, L., 2010: Variability and maintenance of turbulence in the very stable boundary layer. Bound.-Layer Meteor., 135, 118.

  • Meeus, J., 1999: Astronomical Algorithms. Willmann-Bell, 477 pp.

  • Meillier, Y., , R. Frehlich, , R. Jones, , and B. Balsley, 2008: Modulation of small-scale turbulence by ducted gravity waves in the nocturnal boundary layer. J. Atmos. Sci., 65, 14141427.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2004: A simple model for the skewness of global sea surface winds. J. Atmos. Sci., 61, 20372049.

  • Monahan, A. H., 2006a: The probability distribution of sea surface wind speeds. Part I: Theory and SeaWinds observations. J. Climate, 19, 497520.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006b: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19, 521534.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2007: Empirical models of the probability distribution of sea surface wind speeds. J. Climate, 20, 57985814.

  • Monahan, A. H., 2010: The probability distribution of sea surface wind speeds: Effects of variable surface stratification and boundary layer thickness. J. Climate, 23, 51515162.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , and J. Culina, 2011: Stochastic averaging of idealized climate models. J. Climate, 24, 30683088.

  • Narovlyanskii, G. Ya., 1970: Aviation Climatology. Israel Program for Scientific Translations, 218 pp.

  • Penland, C., 2003: Noise out of chaos and why it won’t go away. Bull. Amer. Meteor. Soc., 84, 921925.

  • Petersen, E. L., , N. G. Mortensen, , L. Landberg, , J. Højstrup, , and H. P. Frank, 1998a: Wind power meteorology. Part I: Climate and turbulence. Wind Energy, 1, 2545.

    • Search Google Scholar
    • Export Citation
  • Petersen, E. L., , N. G. Mortensen, , L. Landberg, , J. Højstrup, , and H. P. Frank, 1998b: Wind power meteorology. Part II: Siting and models. Wind Energy, 1, 5572.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., , A. V. Eliseev, , R. Klein, , and H. Oesterle, 2008: On statistics of the free-troposphere synoptic component: An evaluation of skewness and mixed third-order moments contribution to synoptic-scale dynamics and fluxes of heat and humidity. Tellus, 60A, 1131.

    • Search Google Scholar
    • Export Citation
  • Putnam, P., 1948: Power from the Wind. Van Nostrand Co., 224 pp.

  • Scinocca, J., , N. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Sherlock, R. H., 1951: Analyzing winds for frequency and duration. On Atmospheric Pollution: A Group of Contributions, Meteor. Monogr., No. 4, Amer. Meteor. Soc., 42–49.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Stull, R. B., 1997: An Introduction to Boundary Layer Meteorology. Kluwer, 670 pp.

  • Thorpe, A. J., , and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103, 633653.

  • Troen, I., , and E. L. Petersen, 1989: European Wind Atlas. Risø National Laboratory, 656 pp.

  • van de Wiel, B. J. H., , R. J. Ronda, , A. F. Moene, , H. A. R. de Bruin, , and A. A. M. Holtslag, 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59, 942958.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., , A. F. Moene, , O. K. Hartogensis, , H. A. R. de Bruin, , and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., , S. C. Doney, , T. Takahashi, , and W. R. McGillis, 2002: The effect of using time-averaged winds on regional air-sea CO2 fluxes. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 351–356.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 20
PDF Downloads 85 85 24

The Probability Distribution of Land Surface Wind Speeds

View More View Less
  • 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • | 2 Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The probability density function (pdf) of land surface wind speeds is characterized using a global network of observations. Daytime surface wind speeds are shown to be broadly consistent with the Weibull distribution, while nighttime surface wind speeds are generally more positively skewed than the corresponding Weibull distribution (particularly in summer). In the midlatitudes, these strongly positive skewnesses are shown to be generally associated with conditions of strong surface stability and weak lower-tropospheric wind shear. Long-term tower observations from Cabauw, the Netherlands, and Los Alamos, New Mexico, demonstrate that lower-tropospheric wind speeds become more positively skewed than the corresponding Weibull distribution only in the shallow (~50 m) nocturnal boundary layer. This skewness is associated with two populations of nighttime winds: (i) strongly stably stratified with strong wind shear and (ii) weakly stably or unstably stratified with weak wind shear. Using an idealized two-layer model of the boundary layer momentum budget, it is shown that the observed variability of the daytime and nighttime surface wind speeds can be accounted for through a stochastic representation of intermittent turbulent mixing at the nocturnal boundary layer inversion.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Adam Monahan, School of Earth and Ocean Sciences, University of Victoria, Victoria BC V8W 3P6, Canada. E-mail: monahana@uvic.ca

Abstract

The probability density function (pdf) of land surface wind speeds is characterized using a global network of observations. Daytime surface wind speeds are shown to be broadly consistent with the Weibull distribution, while nighttime surface wind speeds are generally more positively skewed than the corresponding Weibull distribution (particularly in summer). In the midlatitudes, these strongly positive skewnesses are shown to be generally associated with conditions of strong surface stability and weak lower-tropospheric wind shear. Long-term tower observations from Cabauw, the Netherlands, and Los Alamos, New Mexico, demonstrate that lower-tropospheric wind speeds become more positively skewed than the corresponding Weibull distribution only in the shallow (~50 m) nocturnal boundary layer. This skewness is associated with two populations of nighttime winds: (i) strongly stably stratified with strong wind shear and (ii) weakly stably or unstably stratified with weak wind shear. Using an idealized two-layer model of the boundary layer momentum budget, it is shown that the observed variability of the daytime and nighttime surface wind speeds can be accounted for through a stochastic representation of intermittent turbulent mixing at the nocturnal boundary layer inversion.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Adam Monahan, School of Earth and Ocean Sciences, University of Victoria, Victoria BC V8W 3P6, Canada. E-mail: monahana@uvic.ca
Save