• Bitz, C. M., , J. K. Ridley, , M. M. Holland, , and H. Cattle, 2011: 20th and 21st century Arctic climate in global climate models. Arctic Climate Change—The ACSYS Decade and Beyond, P. Lemke, Ed., Springer, in press.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., , K. C. Armour, , C. M. Bitz, , and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250.

    • Search Google Scholar
    • Export Citation
  • Boé, J., , A. Hall, , and X. Qu, 2009a: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2, 341343, doi:10.1038/ngeo467.

    • Search Google Scholar
    • Export Citation
  • Boé, J., , A. Hall, , and X. Qu, 2009b: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695.

  • Comiso, J. C., , C. L. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., , C. K. Folland, , G. Lesins, , M. K. Dubey, , and M. Wang, 2009: Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24, 34843519.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., 2010: Geographic muting of changes in the Arctic sea ice cover. Geophys. Res. Lett., 37, L16501, doi:10.1029/2010GL043741.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , and L. Cid-Serrano, 2010: Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30, 174184.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., , K. Knowles, , W. Meier, , and M. Savoie, 2009: Sea ice index. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/seaice_index/.]

    • Search Google Scholar
    • Export Citation
  • Fuller, W. A., 1987: Measurement Error Models. John Wiley & Sons, 440 pp.

  • Goosse, H., , O. Arzel, , C. M. Bitz, , A. de Montety, , and M. Vancoppenolle, 2009: Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett., 36, L23702, doi:10.1029/2009GL040546.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , P. A. Stott, , D. J. Cresswell, , N. A. Rayner, , C. Gordon, , and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.

    • Search Google Scholar
    • Export Citation
  • Hayya, J., , D. Armstrong, , and N. Gressis, 1975: A note on the ratio of two normally distributed variables. Manage. Sci., 21 (11), 13381341, doi:10.1287/mnsc.21.11.1338.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , C. M. Bitz, , and L. B. Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GLO28024.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., , R. Zhang, , and T. L. Delworth, 2011: Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Marsaglia, G., 2006: Ratios of normal variables. J. Stat. Software, 16 (4), 110.

  • Min, S.-K., , X. Zhang, , F. W. Zwiers, , and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, doi:10.1029/2008GL035725.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2003: Long-term ice variability in Arctic marginal seas. J. Climate, 16, 20782085.

  • Ridley, J., , J. Lowe, , C. Brierley, , and G. Harris, 2007: Uncertainty in the sensitivity of Arctic sea ice to global warming in a perturbed parameter climate model ensemble. Geophys. Res. Lett., 34, L19704, doi:10.1029/2007GL031209.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. M. Holland, , W. Meier, , T. Scambos, , and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., and Coauthors, 1999: Global warming and Northern Hemisphere sea ice extent. Science, 286, 19341937.

  • Vinnikov, K. Y., , D. J. Cavalieri, , and C. L. Parkinson, 2006: A model assessment of satellite observed trends in polar sea ice extents. Geophys. Res. Lett., 33, L05704, doi:10.1029/2005GL025282.

    • Search Google Scholar
    • Export Citation
  • Wang, M., , and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, doi:10.1029/2009/GL037820.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , T. L. Delworth, , and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., 2010: Sensitivity of Arctic summer sea ice coverage to global warming forcing: Toward reducing uncertainty in arctic climate change projections. Tellus, 62A, 220227.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 193 33
PDF Downloads 90 90 6

Do Climate Models Underestimate the Sensitivity of Northern Hemisphere Sea Ice Cover?

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The sensitivity of Northern Hemisphere sea ice cover to global temperature change is examined in a group of climate models and in the satellite-era observations. The models are found to have well-defined, distinguishable sensitivities in climate change experiments. The satellite-era observations show a larger sensitivity—a larger decline per degree of warming—than any of the models. To evaluate the role of natural variability in this discrepancy, the sensitivity probability density function is constructed based upon the observed trends and natural variability of multidecadal ice cover and global temperature trends in a long control run of the GFDL Climate Model, version 2.1 (CM2.1). This comparison shows that the model sensitivities range from about 1 to more than 2 pseudostandard deviations of the variability smaller than observations indicate. The impact of natural Atlantic multidecadal temperature trends (as simulated by the GFDL model) on the sensitivity distribution is examined and found to be minimal.

Corresponding author address: Michael Winton, NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: Michael.Winton@noaa.gov

Abstract

The sensitivity of Northern Hemisphere sea ice cover to global temperature change is examined in a group of climate models and in the satellite-era observations. The models are found to have well-defined, distinguishable sensitivities in climate change experiments. The satellite-era observations show a larger sensitivity—a larger decline per degree of warming—than any of the models. To evaluate the role of natural variability in this discrepancy, the sensitivity probability density function is constructed based upon the observed trends and natural variability of multidecadal ice cover and global temperature trends in a long control run of the GFDL Climate Model, version 2.1 (CM2.1). This comparison shows that the model sensitivities range from about 1 to more than 2 pseudostandard deviations of the variability smaller than observations indicate. The impact of natural Atlantic multidecadal temperature trends (as simulated by the GFDL model) on the sensitivity distribution is examined and found to be minimal.

Corresponding author address: Michael Winton, NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: Michael.Winton@noaa.gov
Save