• Antonov, J. I., , R. A. Locarnini, , T. P. Boyer, , A. V. Mishonov, , and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., , S. D. Howden, , and C. J. Koblinsky, 2002: Sea surface salinity measurements in the historical database. J. Geophys. Res., 107, 8019, doi:10.1029/2000JC000767.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., , C. Stephens, , J. I. Antonov, , M. E. Conkright, , L. A. Locarnini, , T. D. O’Brien, , and H. E. Garcia, 2002: Salinity. Vol. 2, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 165 pp.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., , C. W. Fairall, , X. Zeng, , L. Eymard, , and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , G. A. Chepurin, , X. Cao, , and B. S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , G. A. Chepurin, , and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311326.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., , E. Nelkin, , J. Ardizzone, , R. M. Atlas, , and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 32563273.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., , E. Nelkin, , J. Ardizzone, , and R. M. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17, 39733989.

    • Search Google Scholar
    • Export Citation
  • Colbo, K., , and R. Weller, 2007: The variability and heat budget of the upper ocean under the Chile-Peru stratus. J. Mar. Res., 65, 607637.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and X.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , C. W. Fairall, , D. E. Wolfe, , L. Bariteau, , and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174.

    • Search Google Scholar
    • Export Citation
  • Diaz, H., , C. Folland, , T. Manabe, , D. Parker, , R. Reynolds, , and S. Woodruff, 2002: Workshop on advances in the use of historical marine climate data. WMO Bull., 51, 377380.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and R. C. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , S. G. Yeager, , R. B. Neale, , S. Levis, , and D. A. Bailey, 2009: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., , A. Rosati, , and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13, 22392260.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17, 36663682.

  • Kubota, M., , A. Kano, , H. Muramatsu, , and H. Tomita, 2003: Intercomparison of various surface heat flux fields. J. Climate, 16, 670678.

  • Large, W. G., , and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23252346.

  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: Review and model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Ma, C.-C., , C. R. Mechoso, , A. W. Robertson, , and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645.

    • Search Google Scholar
    • Export Citation
  • McAvaney, B., and Coauthors, 2001: Model evaluation. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 471–523.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , and F. Colas, 2010: Climate heat balance off western South America: Regional oceanic circulation and eddies. CLIVAR Exchanges, No. 53, International CLIVAR Project Office, Southampton, United Kingdom, 14–16.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10, 409440.

  • Rossow, W. B., , A. W. Walker, , D. E. Beuschel, , and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO Tech. Doc. 737, 115 pp.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , and J. L. Lin, 2009: Interannual variability of the upper ocean in the southeast Pacific stratus cloud region. J. Climate, 22, 50725088.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and J. K. Gibson, 2002: The ERA-40 Project Plan. ECMWF ERA-40 Project Report Series 1, 63 pp.

  • Smith, R. D., , J. K. Dukowicz, , and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60, 3861.

  • Stephens, C., , J. I. Antonov, , T. P. Boyer, , M. E. Conkright, , R. A. Locarnini, , T. D. O’Brien, , and H. E. Garcia, 2002: Temperature. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 169 pp.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., , C. F. Moffat, , R. A. Weller, , and J. T. Farrar, 2010: Eddies in the southeast Pacific and their influence on the upper ocean. Extended Abstracts, 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, A54B-02. [Available online at http://adsabs.harvard.edu/abs/2010AGUFM.A54B..02S.]

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., , C. R. Mechoso, , L. C. Shaffrey, , and J. M. Slingo, 2010: Upper-ocean heat budget and ocean eddy transport in the south-east Pacific in a high-resolution coupled model. Climate Dyn., 35, 13091329, doi:10.1007/s00382-009-0703-8.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , C. Bretherton, , B. Huebert, , C. R. Mechoso, , and R. Weller, 2007: The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS): Improving understanding, model simulations, and prediction of the southeast Pacific climate system. Post-VOCALS-Rex Rep., 17 pp. [Available online at http://www.atmos.ucla.edu/~mechoso/Intro_Final.pdf.]

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Past, Present and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic Publishers, 121–152.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , X. Jin, , and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., , J. T. Farrar, , R. A. Weller, , S. P. Bigorre, , L. St Laurent, , F. Straneo, , and C. F. Moffat, cited 2010: Upper-ocean turbulence beneath the stratus cloud deck of the southeast Pacific. [Available online at http://adsabs.harvard.edu/abs/2010AGUFM.A51A0047Z.]

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., , and B. S. Giese, 2009: Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms. J. Geophys. Res., 114, C11009, doi:10.1029/2008JC005190.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., , T. Shinoda, , G. N. Kiladis, , J.-L. Lin, , E. J. Metzger, , H. E. Hurlburt, , and B. S. Giese, 2010: Upper-ocean processes under the stratus cloud deck in the southeast Pacific Ocean. J. Phys. Oceanogr., 40, 103120.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 7
PDF Downloads 51 51 15

Sea Surface Temperature Biases under the Stratus Cloud Deck in the Southeast Pacific Ocean in 19 IPCC AR4 Coupled General Circulation Models

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
  • | 2 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 3 Department of Geography, The Ohio State University, Columbus, Ohio
  • | 4 NOAA/Earth System Research Laboratory/Physical Science Division, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This study examines systematic biases in sea surface temperature (SST) under the stratus cloud deck in the southeast Pacific Ocean and upper-ocean processes relevant to the SST biases in 19 coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The 20 years of simulations from each model are analyzed. Pronounced warm SST biases in a large portion of the southeast Pacific stratus region are found in all models. Processes that could contribute to the SST biases are examined in detail based on the computation of major terms in the upper-ocean heat budget. Negative biases in net surface heat fluxes are evident in most of the models, suggesting that the cause of the warm SST biases in models is not explained by errors in net surface heat fluxes. Biases in heat transport by Ekman currents largely contribute to the warm SST biases both near the coast and the open ocean. In the coastal area, southwestward Ekman currents and upwelling in most models are much weaker than observed owing to weaker alongshore winds, resulting in insufficient advection of cold water from the coast. In the open ocean, warm advection due to Ekman currents is overestimated in models because of the larger meridional temperature gradient, the smaller zonal temperature gradient, and overly weaker Ekman currents.

Current affiliation: The Florida State University, Tallahassee, Florida.

Corresponding author address: Yangxing Zheng, Center for Ocean–Atmospheric Prediction Studies, The Florida State University, 2035 E. Paul Dirac Dr., Johnson Building, Tallahassee, FL 32306-2840. E-mail: yzheng@fsu.edu

Abstract

This study examines systematic biases in sea surface temperature (SST) under the stratus cloud deck in the southeast Pacific Ocean and upper-ocean processes relevant to the SST biases in 19 coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The 20 years of simulations from each model are analyzed. Pronounced warm SST biases in a large portion of the southeast Pacific stratus region are found in all models. Processes that could contribute to the SST biases are examined in detail based on the computation of major terms in the upper-ocean heat budget. Negative biases in net surface heat fluxes are evident in most of the models, suggesting that the cause of the warm SST biases in models is not explained by errors in net surface heat fluxes. Biases in heat transport by Ekman currents largely contribute to the warm SST biases both near the coast and the open ocean. In the coastal area, southwestward Ekman currents and upwelling in most models are much weaker than observed owing to weaker alongshore winds, resulting in insufficient advection of cold water from the coast. In the open ocean, warm advection due to Ekman currents is overestimated in models because of the larger meridional temperature gradient, the smaller zonal temperature gradient, and overly weaker Ekman currents.

Current affiliation: The Florida State University, Tallahassee, Florida.

Corresponding author address: Yangxing Zheng, Center for Ocean–Atmospheric Prediction Studies, The Florida State University, 2035 E. Paul Dirac Dr., Johnson Building, Tallahassee, FL 32306-2840. E-mail: yzheng@fsu.edu
Save