• Addison, P. S., 2002: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine, and Finance. Institute of Physics Publishing, 353 pp.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , M. Chelliah, , and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35, 367383.

    • Search Google Scholar
    • Export Citation
  • Basher, R. E., , and X. Zheng, 1995: Tropical cyclones in the southwest Pacific: Spatial patterns and relationships to Southern Oscillation and sea surface temperature. J. Climate, 8, 12491260.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50.

  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Camargo, S. J., , and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006.

  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007a: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño–Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2007: Interannual variations of intense typhoon activity. Tellus, 59A, 455460.

  • Chan, J. C. L., , and R. H. F. Kwok, 1999: Tropical cyclone genesis in a global NWP model. Mon. Wea. Rev., 127, 611624.

  • Chand, S. S., , and K. J. E. Walsh, 2009: Tropical cyclone activity in the Fiji region: Spatial patterns and relationship to large-scale circulation. J. Climate, 22, 38773893.

    • Search Google Scholar
    • Export Citation
  • Chand, S. S., , K. J. E. Walsh, , and J. C. L. Chan, 2010: A Bayesian regression approach to seasonal prediction of tropical cyclones affecting the Fiji Region. J. Climate, 23, 34253445.

    • Search Google Scholar
    • Export Citation
  • Chen, T., , S.-P. Weng, , N. Yamazaki, , and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 10801090.

    • Search Google Scholar
    • Export Citation
  • Chia, H. H., , and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J. Climate, 15, 29342944.

    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, cited 2010: Monthly atmospheric and SST indices. [Available online at http://www.cpc.noaa.gov/data/indices/.]

    • Search Google Scholar
    • Export Citation
  • Courtney, J., , and J. A. Knaff, 2009: Adapting the Knaff and Zehr wind pressure relationship for operational use in tropical cyclone Warning Centres. Aust. Meteor. Mag., 58, 167179.

    • Search Google Scholar
    • Export Citation
  • Efron, B., , and R. Tibshirani, 1991: Statistical data analysis in the computer age. Science, 253, 390395.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509.

  • Evans, J. L., , and R. L. Allan, 1992: El Niño–Southern Oscillation modification to the structure of the monsoon and tropical cyclone activity in the Australasian region. Int. J. Climatol., 12, 611623.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769.

  • Harper, B. A., , S. A. Stroud, , M. McCormack, , and S. West, 2008: A review of historical tropical cyclone intensity in northwestern Australia and implications for climate change trend analysis. Aust. Meteor. Mag., 57, 121141.

    • Search Google Scholar
    • Export Citation
  • Hastings, P. A., 1990: Southern Oscillation influence on tropical cyclone activity in the Australian/southwest Pacific region. Int. J. Climatol., 10, 291298.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 1938.

    • Search Google Scholar
    • Export Citation
  • Joint Typhoon Warning Center, cited 2010: Tropical cyclone best track data site. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/.]

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kuleshov, Y., , L. Qi, , R. Fawcett, , and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 115, D01101, doi:10.1029/2009JD012372.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., , R. Fawcett, , L. Qi, , B. Trewin, , D. Jones, , J. McBride, , and H. Ramsay, 2010: Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. J. Geophys. Res., 35, L14S08, doi:10.1029/2007GL032983.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1984: The Southern Oscillation, sea surface temperature, and interannual fluctuations in Australian tropical cyclone activity. J. Climatol., 4, 661670.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , and R. F. Chalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Paterson, L. A., , B. N. Hanstrum, , N. E. Davidson, , and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 113, 36443660.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Ramsay, H. A., , L. M. Leslie, , P. J. Lamb, , M. B. Richman, , and M. Leplastrier, 2008: Interannual variability of tropical cyclones in the Australian region: Role of large-scale environment. J. Climate, 21, 10831103.

    • Search Google Scholar
    • Export Citation
  • Revell, C. G., , and S. W. Goulter, 1986a: South Pacific tropical cyclones and the Southern Oscillation. Mon. Wea. Rev., 114, 11381145.

    • Search Google Scholar
    • Export Citation
  • Revell, C. G., , and S. W. Goulter, 1986b: Lagged relationships between Southern Oscillation and numbers of tropical cyclones in the South Pacific region. Mon. Wea. Rev., 114, 26692670.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 2002: Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130, 590609.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Sobel, A. H., , and S. J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 33963407.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D., , A. Hannachi, , and A. O’Neill, 2004: On the existence of multiple climate regimes. Quart. J. Roy. Meteor. Soc., 130, 583605.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178.

  • Torrence, C., , and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 19852004.

    • Search Google Scholar
    • Export Citation
  • Trenberth, A. J., 1976: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Vincent, E. M., , M. Lengaigne, , C. E. Menkes, , N. C. Jourdain, , P. Marchesiello, , and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896.

    • Search Google Scholar
    • Export Citation
  • Webster, P., , G. J. Holland, , J. A. Curry, , and H. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., , and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876.

  • Zeng, Z., , Y. Wang, , and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 3859.

    • Search Google Scholar
    • Export Citation
  • Zheng, X. C. L., , Y. H. Duan, , and H. Yu, 2007: Dynamical effects of environmental vertical wind shear on tropical cyclone motion, structure, and intensity. Meteor. Atmos. Phys., 97, 207220.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 13
PDF Downloads 101 101 19

Influence of ENSO on Tropical Cyclone Intensity in the Fiji Region

View More View Less
  • 1 School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

This study examines the variation in tropical cyclone (TC) intensity for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga (FST) region. The variation in TC intensity is inferred from the accumulated cyclone energy (ACE), which is constructed from the 6-hourly Joint Typhoon Warning Center best-track data for the period 1985–2006. Overall, results suggest that ACE in the FST region is considerably influenced by the ENSO signal. A substantial contribution to this ENSO signal in ACE comes from the region equatorward of 15°S where TC numbers, lifetime, and intensity all play a significant role. However, the ACE–ENSO relationship weakens substantially poleward of 15°S where large-scale environmental variables affecting TC intensity are found to be less favorable during El Niño years than during La Niña years; in the region equatorward of 15°S, the reverse is true. Therefore, TCs entering this region poleward of 15°S are able to sustain their intensity for a longer period of time during La Niña years as opposed to TCs entering the region during El Niño years, when they decay more rapidly.

Corresponding author address: Savin S. Chand, School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia. E-mail: schand@pgrad.unimelb.edu.au

Abstract

This study examines the variation in tropical cyclone (TC) intensity for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga (FST) region. The variation in TC intensity is inferred from the accumulated cyclone energy (ACE), which is constructed from the 6-hourly Joint Typhoon Warning Center best-track data for the period 1985–2006. Overall, results suggest that ACE in the FST region is considerably influenced by the ENSO signal. A substantial contribution to this ENSO signal in ACE comes from the region equatorward of 15°S where TC numbers, lifetime, and intensity all play a significant role. However, the ACE–ENSO relationship weakens substantially poleward of 15°S where large-scale environmental variables affecting TC intensity are found to be less favorable during El Niño years than during La Niña years; in the region equatorward of 15°S, the reverse is true. Therefore, TCs entering this region poleward of 15°S are able to sustain their intensity for a longer period of time during La Niña years as opposed to TCs entering the region during El Niño years, when they decay more rapidly.

Corresponding author address: Savin S. Chand, School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia. E-mail: schand@pgrad.unimelb.edu.au
Save