• Ackerman, S. A., 1997: Remote sensing aerosols using satellite infrared observations. J. Geophys. Res., 102, 17 06917 079.

  • Ackerman, S. A., , K. Strabala, , W. Menzel, , R. Frey, , C. Moeller, , and L. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., , R. E. Holz, , R. Frey, , E. W. Eloranta, , B. C. Maddux, , and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25, 10731086.

    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., , and M. Doutriaux-Boucher, 2005: A comparison of cloud droplet radii measured from space. IEEE Trans. Geosci. Remote Sens., 43, 17961805.

    • Search Google Scholar
    • Export Citation
  • Buriez, J. C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18, 27852813.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., , F. M. Bréon, , M. Leroy, , A. Podaire, , A. Bricaud, , J. C. Buriez, , and G. Sèze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598615.

    • Search Google Scholar
    • Export Citation
  • Deuzé, J. L., and Coauthors, 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res., 106, 49134926.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., , S. A. Ackerman, , Y. Liu, , K. I. Strabala, , H. Zhang, , J. R. Key, , and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 10571072.

    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., , A. F. H. Goetz, , and W. J. Wiscombe, 1993: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band. Geophys. Res. Lett., 20, 301304.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , H. Chepfer, , M. Herman, , G. Brogniez, , and F. Parol, 1997: Use of polarization for cloud studies. Polarization: Measurement, Analysis, and Remote Sensing, D. H. Goldstein and R. A. Chipman, Eds., International Society for Optical Engineering, (SPIE Proceedings, Vol. 3121), 330–341.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , M. Herman, , H. Chepfer, , J. Riedi, , G. Brogniez, , P. Couvert, , and G. Sèze, 2000: Cloud thermodynamic phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105, 14 74714 759.

    • Search Google Scholar
    • Export Citation
  • Hubanks, P., , M. King, , S. Platnick, , and R. Pincus, 2008: MODIS atmosphere L3 gridded product algorithm theoretical basis document. MODIS Doc. ATBD-MOD-30, 96 pp.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987: A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res., 92, 39914000.

  • Kaufman, Y. J., , C. Ichoku, , L. Giglio, , S. Korontzi, , D. A. Chu, , W. M. Hao, , R.-R. Li, , and C. O. Justice, 2003: Fire and smoke observed from the earth observing system MODIS instrument—Products, validation, and operational use. Int. J.Remote Sens., 24, 17651781.

    • Search Google Scholar
    • Export Citation
  • King, M., , Y. Kaufman, , W. Menzel, , D. Tanré, , N. Center, , and M. Greenbelt, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 227.

    • Search Google Scholar
    • Export Citation
  • Leroy, M., and Coauthors, 1997: Retrieval of atmospheric properties and surface bidirectional reflectances over the land from POLDER. J. Geophys. Res., 102, 17 02317 037.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., 1989: Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data. J. Geophys. Res., 94, 23032320.

    • Search Google Scholar
    • Export Citation
  • Parol, F., , J. Buriez, , C. Vanbauce, , P. Couvert, , G. Seze, , P. Goloub, , and S. Cheinet, 1999: First results of the POLDER “earth radiation budget and clouds” operational algorithm. IEEE Trans. Geosci. Remote Sens., 37, 15971612.

    • Search Google Scholar
    • Export Citation
  • Parol, F., and Coauthors, 2004: Review of capabilities of multi-angle and polarization cloud measurements from POLDER. Adv. Space Res., 33, 10801088.

    • Search Google Scholar
    • Export Citation
  • Parol, F., , C. Vanbauce, , J. Riedi, , F. Thieuleux, , Z. Poussi, , and A. Lifermann, 2007: Comparison and statistical analysis of cloud properties derived from POLDER and MODIS. EUMETSAT Meteorological Satellite Conf. and the 15th AMS Satellite Meteorology and Oceanography Conf., Amsterdam, Netherlands. [Available from http://www.eumetsat.int/home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/2007/groups/cps/documents/document/­pdf_conf_p50_s8_11_parol_p.pdf.]

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. King, , S. Ackerman, , W. Menzel, , B. Baum, , J. Riedi, , and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., and Coauthors, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220.

  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288.

  • Roy, D. P., , J. S. Borak, , S. Devadiga, , R. E. Wolfe, , M. Zheng, , and J. Descloitres, 2002: The MODIS Land product quality assessment approach. Remote Sens. Environ., 83, 6276.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , S. Cros, , A. Guignard, , and N. Lamquin, 2010: A 6-year global cloud climatology from the Atmospheric Infrared Sounder (AIRS) and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys., 10, 71977214.

    • Search Google Scholar
    • Export Citation
  • Vanbauce, C., , J. C. Buriez, , F. Parol, , B. Bonnel, , G. Sèze, , and P. Couvert, 1998: Apparent pressure derived from ADEOS-POLDER observations in the oxygen A-band over ocean. Geophys. Res. Lett., 25, 31593162.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , C. J. Hahn, , J. London, , R. M. Chervin, , and R. L. Jenne, 1986: Global distribution of total cloud cover and cloud type amounts over land. NCAR Tech. Note NCAR/TN-273+STR, 29 pp. + 200 maps.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , C. J. Hahn, , J. London, , R. M. Chervin, , and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 41 pp. + 170 maps.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B., , and L. Parker, 1992: On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res., 97, 12 79912 823.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , W. P. Menzel, , H. M. Woolf, , and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 19721986.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., , P. Yang, , G. Kattawar, , J. Riedi, , L. C. Labonnote, , B. Baum, , S. Platnick, , and H.-L. Huang, 2009: Influence of ice particle model on retrieving cloud optical thickness from satellite measurements: Model comparison and implication for climate study. Atmos. Chem. Phys. Discuss., 9, 17571796.

    • Search Google Scholar
    • Export Citation
  • Zhao, G., , and L. Di Girolamo, 2004: A cloud fraction versus view angle technique for automatic in-scene evaluation of the MISR cloud mask. J. Appl. Meteor., 43, 860869.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 9
PDF Downloads 48 48 6

Examination of POLDER/PARASOL and MODIS/Aqua Cloud Fractions and Properties Representativeness

View More View Less
  • 1 Laboratoire Optique d’Atmosphérique, UMR CNRS 8518, Université Lille 1, Villeneuve d’Ascq, France
© Get Permissions
Restricted access

Abstract

The Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) and Aqua are two satellites on sun-synchronous orbits in the A-Train constellation. Aboard these two platforms, the Polarization and Directionality of Earth Reflectances (POLDER) and Moderate Resolution Imaging Spectroradiometer (MODIS) provide quasi simultaneous and coincident observations of cloud properties. The similar orbits but different detecting characteristics of these two sensors call for a comparison between the derived datasets to identify and quantify potential uncertainties in retrieved cloud properties.

To focus on the differences due to different sensor spatial resolution and coverage, while minimizing sampling and weighting issues, the authors have recomputed monthly statistics directly from the respective official level-2 products. The authors have developed a joint dataset that contains both POLDER and MODIS level-2 cloud products collocated on a common sinusoidal grid. The authors have then computed and analyzed monthly statistics of cloud fractions corresponding either to the total cloud cover or to the “retrieved” cloud fraction for which cloud optical properties are derived. These simple yet crucial cloud statistics need to be clearly understood to allow further comparison work of the other cloud parameters.

From this study, it is demonstrated that on average POLDER and MODIS datasets capture correctly the main characteristics of global cloud cover and provide similar spatial distributions and temporal variations. However, each sensor has its own advantages and weaknesses in discriminating between clear and cloudy skies in particular situations. Also it is shown that significant differences exist between the MODIS total cloud fraction (day mean) and the “retrieved” cloud fraction (combined mean). This study found a global negative difference of about 10% between POLDER and MODIS day-mean cloud fraction. On the contrary, a global positive difference of about 10% exists between POLDER and MODIS combined-mean cloud fraction. These statistical biases show both global and regional distributions that can be driven by sensors characteristics, environmental factors, and also carry potential information on cloud cover structure. These results provide information on the quality of cloud cover derived from POLDER and MODIS and should be taken into account for the use of other cloud products.

Corresponding author address: Shan Zeng, Laboratoire Optique d’Atmosphérique, UMR CNRS 8518, Université Lille 1, 59655 Villeneuve d’Ascq CEDEX, France. E-mail: shan.zeng@loa.univ-lille1.fr

Abstract

The Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) and Aqua are two satellites on sun-synchronous orbits in the A-Train constellation. Aboard these two platforms, the Polarization and Directionality of Earth Reflectances (POLDER) and Moderate Resolution Imaging Spectroradiometer (MODIS) provide quasi simultaneous and coincident observations of cloud properties. The similar orbits but different detecting characteristics of these two sensors call for a comparison between the derived datasets to identify and quantify potential uncertainties in retrieved cloud properties.

To focus on the differences due to different sensor spatial resolution and coverage, while minimizing sampling and weighting issues, the authors have recomputed monthly statistics directly from the respective official level-2 products. The authors have developed a joint dataset that contains both POLDER and MODIS level-2 cloud products collocated on a common sinusoidal grid. The authors have then computed and analyzed monthly statistics of cloud fractions corresponding either to the total cloud cover or to the “retrieved” cloud fraction for which cloud optical properties are derived. These simple yet crucial cloud statistics need to be clearly understood to allow further comparison work of the other cloud parameters.

From this study, it is demonstrated that on average POLDER and MODIS datasets capture correctly the main characteristics of global cloud cover and provide similar spatial distributions and temporal variations. However, each sensor has its own advantages and weaknesses in discriminating between clear and cloudy skies in particular situations. Also it is shown that significant differences exist between the MODIS total cloud fraction (day mean) and the “retrieved” cloud fraction (combined mean). This study found a global negative difference of about 10% between POLDER and MODIS day-mean cloud fraction. On the contrary, a global positive difference of about 10% exists between POLDER and MODIS combined-mean cloud fraction. These statistical biases show both global and regional distributions that can be driven by sensors characteristics, environmental factors, and also carry potential information on cloud cover structure. These results provide information on the quality of cloud cover derived from POLDER and MODIS and should be taken into account for the use of other cloud products.

Corresponding author address: Shan Zeng, Laboratoire Optique d’Atmosphérique, UMR CNRS 8518, Université Lille 1, 59655 Villeneuve d’Ascq CEDEX, France. E-mail: shan.zeng@loa.univ-lille1.fr
Save