• Abe, M., , H. Shiogama, , J. Hargreaves, , J. Annan, , T. Nozawa, , and S. Emori, 2009: Correlation between inter-model similarities in spatial pattern for present and projected future mean climate. SOLA, 5, 133136.

    • Search Google Scholar
    • Export Citation
  • Adler, R., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Allan, R., , and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., , and J. C. Hargreaves, 2010: Reliability of the CMIP3 ensemble. Geophys. Res. Lett., 37, L02703, doi:10.1029/2009GL041994.

  • Bretherton, C., , M. Widmann, , V. Dymnikov, , J. Wallace, , and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , B. B. B. Booth, , B. Bhaskaran, , G. R. Harris, , J. M. Murphy, , D. M. H. Sexton, , and M. J. Webb, 2010: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multi-model ensembles. Climate Dyn., 36, 17371766, doi:10.1007/s00382-010-0808-0.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P., , K. Taylor, , and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., , and C. Primo, 2008: Evaluating rank histograms using decompositions of the chi-square test statistic. Mon. Wea. Rev., 136, 21332139.

    • Search Google Scholar
    • Export Citation
  • Jones, P., , M. New, , D. Parker, , S. Martin, , and I. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173199.

    • Search Google Scholar
    • Export Citation
  • Jun, M., , R. Knutti, , and D. Nychka, 2008a: Local eigenvalue analysis of CMIP3 climate model errors. Tellus, 60, 9921000.

  • Jun, M., , R. Knutti, , and D. Nychka, 2008b: Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? J. Amer. Stat. Assoc., 103, 934947.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , G. Abramowitz, , M. Collins, , V. Eyring, , P. Gleckler, , B. Hewitson, , and L. Mearns, 2010a: IPCC good practice guidance paper on assessing and combining multi model climate projections. IPCC Working Group I Technical Support Unit, University of Bern, 15 pp.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , R. Furrer, , C. Tebaldi, , J. Cermak, , and G. A. Meehl, 2010b: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., , and G. J. Boer, 2001: CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn., 17, 83106.

  • Lorenz, E., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.

  • Meehl, G., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. Mitchell, , R. Stouffer, , and K. Taylor, 2007: The WCRP CMIP3 multimodel dataset. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., , R. Buizza, , R. Hagedorn, , A. Lawrence, , M. Leutbecher, , and L. Smith, 2006: Ensemble prediction: A pedagogical perspective. ECMWF Newsletter, No. 106, ECMWF, Reading, United Kingdom, 10–16.

    • Search Google Scholar
    • Export Citation
  • Pierce, D., , T. Barnett, , B. Santer, , and P. Gleckler, 2009: Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA, 106, 8441.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Solomon, S., and Coauthors, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephenson, D., , and F. Doblas-Reyes, 2000: Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus, 52A, 300322.

  • Tebaldi, C., , and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., , O. Talagrand, , G. Candille, , and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioners Guide in Atmospheric Science, 137–163.

    • Search Google Scholar
    • Export Citation
  • Whetton, P., , I. Macadam, , J. Bathols, , and J. O’Grady, 2007: Assessment of the use of current climate patterns to evaluate regional enhanced greenhouse response patterns of climate models. Geophys. Res. Lett., 34, L14701, doi:10.1029/2007GL030025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 12
PDF Downloads 57 57 8

Understanding the CMIP3 Multimodel Ensemble

View More View Less
  • 1 RIGC, JAMSTEC, Yokohama, Japan
© Get Permissions
Restricted access

Abstract

The Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble has been widely utilized for climate research and prediction, but the properties and behavior of the ensemble are not yet fully understood. Here, some investigations are undertaken into various aspects of the ensemble’s behavior, in particular focusing on the performance of the multimodel mean. This study presents an explanation of this phenomenon in the context of the statistically indistinguishable paradigm and also provides a quantitative analysis of the main factors that control how likely the mean is to outperform the models in the ensemble, both individually and collectively. The analyses lend further support to the usage of the paradigm of a statistically indistinguishable ensemble and indicate that the current ensemble size is too small to adequately sample the space from which the models are drawn.

Corresponding author address: J. D. Annan, Research Institute for Global Change, 3173-25 Showamachi, Yokohama, Kanagawa, 236-0001, Japan. E-mail: jdannan@jamstec.go.jp

Abstract

The Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble has been widely utilized for climate research and prediction, but the properties and behavior of the ensemble are not yet fully understood. Here, some investigations are undertaken into various aspects of the ensemble’s behavior, in particular focusing on the performance of the multimodel mean. This study presents an explanation of this phenomenon in the context of the statistically indistinguishable paradigm and also provides a quantitative analysis of the main factors that control how likely the mean is to outperform the models in the ensemble, both individually and collectively. The analyses lend further support to the usage of the paradigm of a statistically indistinguishable ensemble and indicate that the current ensemble size is too small to adequately sample the space from which the models are drawn.

Corresponding author address: J. D. Annan, Research Institute for Global Change, 3173-25 Showamachi, Yokohama, Kanagawa, 236-0001, Japan. E-mail: jdannan@jamstec.go.jp
Save