• Artale, V., , S. Calmanti, , and A. Sutera, 2002: North Atlantic THC sensitivity to Mediterranean waters. Tellus, 54A, 159174.

  • Artale, V., and Coauthors, 2006: The Atlantic and Mediterranean Sea as connected systems. Mediterranean Climate Variability, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Elsevier, 283–323.

    • Search Google Scholar
    • Export Citation
  • Bottomley, M., , C. K. Folland, , J. Hsiung, , R. E. Newell, , and D. E. Parker, 1990: Global ocean surface temperature atlas. Her Majesty’s Stationery Office, Norwich, United Kingdom, 24 pp. + 313 color plates.

    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., , and G. P. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20, 217236.

  • Calmanti, S., , V. Artale, , and A. Sutera, 2006: North Atlantic MOC variability and the Mediterranean outflow: A box-model study. Tellus, 58A, 416423.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992a: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., , and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Dima, M., , and G. Lohmann, 2007: A hemispheric mechanism for the Atlantic multidecadal oscillation. J. Climate, 20, 27062719.

  • Dong, B., , and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., , and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 638 pp.

  • Enfield, D. B., , A. M. Mestas Nuñez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Flatau, M. K., , L. Talley, , and P. P. Niiler, 2003: The North Atlantic oscillation, surface velocities, and SST changes in the subpolar North Atlantic. J. Climate, 16, 23552369.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , and D. E. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc., 121, 319367.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1986: Estimating the dimension of weather and climate attractors. J. Atmos. Sci., 43, 419432.

  • Frankcombe, L. M., , A. von der Heydt, , and H. A. Dijkstra, 2010: North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes. J. Climate, 23, 36263638.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Grist, J. P., , R. Marsh, , and S. A. Josey, 2009: On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning streamfunction. J. Climate, 22, 49895002.

    • Search Google Scholar
    • Export Citation
  • Grosfeld, K., , G. Lohmann, , and N. Rimbu, 2008: The impact of Atlantic and Pacific Ocean sea surface temperature anomalies on the North Atlantic multidecadal variability. Tellus, 60A, 728741.

    • Search Google Scholar
    • Export Citation
  • Hodson, D. L. R., , R. T. Sutton, , C. Cassou, , N. Keenlyside, , Y. Okumura, , and T. Zhou, 2009: Climate impacts of recent multidecadal changes in Atlantic Ocean Sea Surface Temperature: A multimodel comparison. Climate Dyn., 34, 10411058, doi:10.1007/s00382-009-0571-2.

    • Search Google Scholar
    • Export Citation
  • Huck, T., , A. Colin de Verdière, , and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29, 865892.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Jiang, N., , D. Neelin, , and M. Ghil, 1995: Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Climate Dyn., 12, 101112.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , T. Jonsson, , and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and southwest Iceland. Int. J. Climatol., 17, 14331450.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., , H. Haak, , M. Latif, , and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 40134031.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , R. J. Allan, , C. K. Folland, , M. Vellinga, , and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , C. K. Folland, , and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Lees, M., , and J. Park, 1995: Multiple-taper spectral analysis: A stand-alone C-subroutine. Comput. Geosci., 1, 99236.

  • Li, J., , and J. X. L. Wang, 2003: A new North Atlantic oscillation index and its variability. Adv. Atmos. Sci., 20, 661676.

  • Lozier, M. S., , and N. M. Stewart, 2008: On the temporally varying northward penetration of Mediterranean overflow water and eastward penetration of Labrador Sea Water. J. Phys. Oceanogr., 38, 20972103.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., , B. Buongiorno Nardelli, , M. Guarracino, , and R. Santoleri, 2007: Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): Re-analysis and validation. Ocean Sci., 3, 299310.

    • Search Google Scholar
    • Export Citation
  • Met Office, cited 2006: Hadley Centre. HadCM3 control run model data. British Atmospheric Data Centre. [Available online at http://badc.nerc.ac.uk/data/hadcm3-control.]

    • Search Google Scholar
    • Export Citation
  • Mohino, E., , S. Janicot, , and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., doi:10.1007/s00382-010-0867-2, in press.

    • Search Google Scholar
    • Export Citation
  • Parker, D., , C. Folland, , A. Scaife, , J. Knight, , A. Colman, , P. Baines, , and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Pisacane, G., , V. Artale, , S. Calmanti, , and V. Rupolo, 2006: Decadal oscillations in the Mediterranean Sea: A result of the overturning circulation variability in the eastern basin? Climate Res., 31, 27.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1998: Influence of Mediterranean outflow on climate. Eos, Trans. Amer. Geophys. Union, 79, 281282.

  • Rasmusson, E. M., , X. Wang, , and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1, 7196.

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , P. Brohan, , D. E. Parker, , C. K. Folland, , J. J. Kennedy, , M. Vanicek, , T. J. Ansell, , and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1979: On the contribution of the Mediterranean Sea outflow to the Norwegian–Greenland Sea. Deep-Sea Res., 26, 11991223.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Sannino, G., , M. Herrmann, , A. Carillo, , V. Rupolo, , V. Ruggiero, , V. Artale, , and P. Heimbach, 2009: An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at the Strait of Gibraltar. Ocean Modell., 30, 5673, doi:10.1016/j.ocemod.2009.06.002.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., , and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Search Google Scholar
    • Export Citation
  • Slepian, S., 1978: Prolate spheroidal wave functions, Fourier analysis and uncertainty. V: The discrete case. Bell Syst. Tech. J., 57, 13711430.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2002: Bias corrections for historic sea surface temperatures based on marine air temperatures. J. Climate, 15, 7387.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS Data (1854–1997). J. Climate, 16, 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North America and European summer climate. Science, 309, 115118.

  • Sutton, R. T., , W. A. Norton, , and S. P. Jewson, 2000: The North Atlantic Oscillation— What role for the ocean? Atmos. Sci. Lett., 1, 89100.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., , and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32, 138160.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. J. Kennedy, , J. M. Wallace, , and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649, doi:10.1038/nature06982.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096.

  • Trenberth, K. E., , and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., , S. Saha, , and A. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435.

  • Vautard, R., , and M. Ghil, 1989: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35, 395424.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , P. Yiou, , and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58, 95126.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., , and P. Wu, 2004: Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J. Climate, 17, 44984511.

    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., , X. Liu, , J. Yianni, , R. C. Miall, , T. Z. Aziz, , and J. F. Stein, 2004: Optimizing coherence estimation to assess the functional correlation of tremor-related activity between the subthalamic nucleus and the forearm muscles. J. Neurosci. Methods, 136, 197205.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., , S. D. Woodruff, , R. W. Reynolds, , J. S. Lubker, , N. Lott, 2005: Icoads release 2.1 data and products. Int. J. Climatol., 25, 823842, doi:10.1002/joc.1166.

    • Search Google Scholar
    • Export Citation
  • Yiou, P., , D. Sornette, , and M. Ghil, 2000: Data-adaptive wavelets and multi-scale SSA. Physica D, 142, 254290.

  • Zhang, R., , and T. L. Delworth, 2007: Impact of the Atlantic Multidecadal Oscillation on the North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 119 19
PDF Downloads 85 85 18

The SST Multidecadal Variability in the Atlantic–Mediterranean Region and Its Relation to AMO

View More View Less
  • 1 Technical Unit Development of Applications of Radiations, Diagnostics and Metrology Laboratory, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Frascati, Italy
  • | 2 Technical Unit of Modeling, Energy, and Environment Modeling, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Roma, Italy
  • | 3 Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR), Roma, Italy
© Get Permissions
Restricted access

Abstract

Two sea surface temperature (SST) time series, the Extended Reconstructed SST version 3 (ERSST.v3) and the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST), are used to investigate SST multidecadal variability in the Mediterranean Sea and to explore possible connections with other regions of the global ocean. The consistency between these two time series and the original International Comprehensive Ocean–Atmosphere Dataset version 2.5 (ICOADS 2.5) over the Mediterranean Sea is investigated, evaluating differences from monthly to multidecadal scales. From annual to longer time scales, the two time series consistently describe the same trends and multidecadal oscillations and agree with Mediterranean ICOADS SSTs. At monthly time scales the two time series are less consistent with each other because of the evident annual cycle that characterizes their difference.

The subsequent analysis of the Mediterranean annual SST time series, based on lagged-correlation analysis, multitaper method (MTM), and singular spectral analysis (SSA), revealed the presence of a significant oscillation with a period of about 70 yr, very close to that of the Atlantic multidecadal oscillation (AMO). An extension of the analysis to other World Ocean regions confirmed that the predominance of this multidecadal signal with respect to longer period trends is a unique feature of the Mediterranean and North Atlantic Ocean, where it reaches its maximum at subpolar latitudes. Signatures of multidecadal oscillations are also found in the global SST time series after removing centennial and longer-term components.

The analysis also reveals that Mediterranean SST and North Atlantic indices are significantly correlated and coherent for periods longer than about 40 yr. For time scales in the range 40–55 yr the coherence between the Mediterranean and subpolar gyre temperatures is higher than the coherence between the Mediterranean SST and North Atlantic Oscillation (NAO) or AMO. Finally, the results of the analysis are discussed in the light of possible climate mechanisms that can couple the Mediterranean Sea with the North Atlantic and the Global Ocean.

Corresponding author address: Salvatore Marullo, ENEA, Via Enrico Fermi 45, 00044 Frascati, Italy. E-mail: salvatore.marullo@enea.it

Abstract

Two sea surface temperature (SST) time series, the Extended Reconstructed SST version 3 (ERSST.v3) and the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST), are used to investigate SST multidecadal variability in the Mediterranean Sea and to explore possible connections with other regions of the global ocean. The consistency between these two time series and the original International Comprehensive Ocean–Atmosphere Dataset version 2.5 (ICOADS 2.5) over the Mediterranean Sea is investigated, evaluating differences from monthly to multidecadal scales. From annual to longer time scales, the two time series consistently describe the same trends and multidecadal oscillations and agree with Mediterranean ICOADS SSTs. At monthly time scales the two time series are less consistent with each other because of the evident annual cycle that characterizes their difference.

The subsequent analysis of the Mediterranean annual SST time series, based on lagged-correlation analysis, multitaper method (MTM), and singular spectral analysis (SSA), revealed the presence of a significant oscillation with a period of about 70 yr, very close to that of the Atlantic multidecadal oscillation (AMO). An extension of the analysis to other World Ocean regions confirmed that the predominance of this multidecadal signal with respect to longer period trends is a unique feature of the Mediterranean and North Atlantic Ocean, where it reaches its maximum at subpolar latitudes. Signatures of multidecadal oscillations are also found in the global SST time series after removing centennial and longer-term components.

The analysis also reveals that Mediterranean SST and North Atlantic indices are significantly correlated and coherent for periods longer than about 40 yr. For time scales in the range 40–55 yr the coherence between the Mediterranean and subpolar gyre temperatures is higher than the coherence between the Mediterranean SST and North Atlantic Oscillation (NAO) or AMO. Finally, the results of the analysis are discussed in the light of possible climate mechanisms that can couple the Mediterranean Sea with the North Atlantic and the Global Ocean.

Corresponding author address: Salvatore Marullo, ENEA, Via Enrico Fermi 45, 00044 Frascati, Italy. E-mail: salvatore.marullo@enea.it
Save