• Archer, D., 1996: A data-driven model of the global calcite lysocline. Global Biogeochem. Cycles, 10, 511526.

  • Arora, V. K., and Coauthors, 2009: The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the CCCma Earth System Model. J. Climate, 22, 60666088.

    • Search Google Scholar
    • Export Citation
  • Bala, G., , K. Caldeira, , A. Mirin, , M. Wickett, , C. Delire, , and T. J. Phillips, 2006: Biogeophysical effects of CO2 fertilization on global climate. Tellus, 58B, 620627, doi:10.1111/j.1600-0889.2006.00210.x.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , and V. Arora, 2009: Temperature and concentration feedbacks in the carbon cycle. Geophys. Res. Lett., 36, L02704, doi:10.1029/2008GL036220.

    • Search Google Scholar
    • Export Citation
  • Canadell, J., and Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA, 104, 18 86618 870.

    • Search Google Scholar
    • Export Citation
  • Cao, L., , G. Bala, , K. Caldeira, , R. Nemani, , and G. Ban-Weiss, 2010: Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. USA, 107, 95139518, doi:10.1073/pnas.0913000107.

    • Search Google Scholar
    • Export Citation
  • Caspersen, J., , S. Pacala, , J. Jenkins, , G. Hurtt, , P. Moorcroft, , and R. Birdsey, 2000: Contributions of land-use history to carbon accumulation in US forests. Science, 290, 11481151.

    • Search Google Scholar
    • Export Citation
  • Collatz, G., , J. Ball, , C. Grivet, , and J. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—A model that includes a Laminar boundary-layer. Agric. For. Meteor., 54, 107136.

    • Search Google Scholar
    • Export Citation
  • Collatz, G., , M. Ribas-Carbo, , and J. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , R. A. Betts, , C. D. Jones, , S. A. Spall, , and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Coupling between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., , M. J. Webb, , J. M. Gregory, , and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, doi:10.1029/2008GL036273.

    • Search Google Scholar
    • Export Citation
  • Eby, M., , K. Zickfeld, , A. Montenegro, , D. Archer, , K. J. Meissner, , and A. J. Weaver, 2009: Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and temperature perturbations. J. Climate, 22, 25012511.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., , L. Bopp, , P. Ciais, , J. L. Dufresne, , L. Fairhead, , H. LeTreut, , P. Monfray, , and J. Orr, 2001: Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28, 15431546.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353.

    • Search Google Scholar
    • Export Citation
  • Fung, I. Y., , S. C. Doney, , K. Lindsay, , and J. John, 2005: Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA, 102, 11 20111 206.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gent, P., , and J. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gregory, J. M., , C. D. Jones, , P. Cadule, , and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250.

  • Gruber, N., and Coauthors, 2009: Oceanic sources, sinks and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.

    • Search Google Scholar
    • Export Citation
  • Hibbard, K. A., , G. A. Meehl, , P. M. Cox, , and P. Friedlingstein, 2007: A strategy for climate change stabilization experiments. Eos, Trans. Amer. Geophys. Union, 88, 20, doi:10.1029/2007EO200002.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J., and Coauthors, 2005: Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. J. Geophys. Res., 110, D19303, doi:10.1029/2005JD005825.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., , N. Gruber, , and S. C. Doney, 2008: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22, GB3016, doi:10.1029/2007GB003139.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., 2007: Implications of CO2 fertilization for future climate change in a coupled climate-carbon model. Global Change Biol., 13, 10681078.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., , A. J. Weaver, , H. D. Matthews, , and P. M. Cox, 2003: The role of land surface dynamics in glacial inception: a study with the UVic Earth System model. Climate Dyn., 21, 515537.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., , and R. Swart, 2000: Emissions Scenarios. Cambridge University Press, 599 pp.

  • Norby, R. J., and Coauthors, 2005: Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA, 102, 18 05218 056.

    • Search Google Scholar
    • Export Citation
  • Obata, A., 2007: Climate–carbon cycle response to freshwater discharge into the North Atlantic. J. Climate, 20, 59625976.

  • Orr, J. C., , R. Najjar, , C. L. Sabine, , and F. Joos, 1999: Abiotic-HOWTO. Internal OCMIP Rep., LSCE/CEA Saclay, 25 pp.

  • Pendall, E., , Y. Osanai, , A. Williams, , and M. Hovenden, 2011: Soil carbon storage under simulated climate change is mediated by plant functional type. Global Change Biol., 17, 505514, doi:10.1111/j.1365-2486.2010.02296.x.

    • Search Google Scholar
    • Export Citation
  • Plattner, G.-K., and Coauthors, 2008: Long-term climate commitments projected with climate–carbon cycle models. J. Climate, 21, 27212751.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , M. Latif, , and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi:10.1029/2004GL022112.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , A. Oschlies, , H. D. Matthews, , and E. D. Galbraith, 2008: Future changes in climate, ocean circulation, ecosystems and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem. Cycles, 22, L19703, doi:10.1029/2007GL031018.

    • Search Google Scholar
    • Export Citation
  • Sellers, P., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal changes in surface ocean pCO2 and net sea-air CO2 flux over the global ocean. Deep-Sea Res. II, 56, 554577.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2008: A summary of the CMIP5 experiment design. CLIVAR Tech. Rep., 33 pp.

  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., , J. C. Fyfe, , A. E. Saenko, , M. Eby, , and A. J. Weaver, 2007: Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds. Geophys. Res. Lett., 34, L12712, doi:10.1029/2006GL028797.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., , M. Eby, , and A. J. Weaver, 2008a: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Global Biogeochem. Cycles, 22, GB3024, doi:10.1029/2007GB003118.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., , J. C. Fyfe, , M. Eby, , and A. J. Weaver, 2008b: Comment on “Saturation of the Southern Ocean CO2 sink due to recent climate change”. Science, 319, 570b.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 16
PDF Downloads 43 43 10

Nonlinearity of Carbon Cycle Feedbacks

View More View Less
  • 1 Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada
  • | 2 University of Victoria, Victoria, British Columbia, Canada
  • | 3 Concordia University, Montreal, Quebec, Canada
  • | 4 Oregon State University, Corvallis, Oregon
  • | 5 University of Victoria, Victoria, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

Coupled climate–carbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake to CO2 (concentration–carbon cycle feedback) and climate change (climate–carbon cycle feedback) combine linearly. This study explores the linearity in the carbon cycle response by analyzing simulations with an earth system model of intermediate complexity [the University of Victoria Earth System Climate Model (UVic ESCM)]. The results indicate that the concentration–carbon and climate–carbon cycle feedbacks do not combine linearly to the overall carbon cycle feedback. In this model, the carbon sinks on land and in the ocean are less efficient when exposed to the combined effect of elevated CO2 and climate change than to the linear combination of the two. The land accounts for about 80% of the nonlinearity, with the ocean accounting for the remaining 20%. On land, this nonlinearity is associated with the different response of vegetation and soil carbon uptake to climate in the presence or absence of the CO2 fertilization effect. In the ocean, the nonlinear response is caused by the interaction of changes in physical properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that postulate linearity in the system’s response may not be adequate.

Corresponding author address: Kirsten Zickfeld, Department of Geography, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada. E-mail: kzickfel@sfu.ca

Abstract

Coupled climate–carbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake to CO2 (concentration–carbon cycle feedback) and climate change (climate–carbon cycle feedback) combine linearly. This study explores the linearity in the carbon cycle response by analyzing simulations with an earth system model of intermediate complexity [the University of Victoria Earth System Climate Model (UVic ESCM)]. The results indicate that the concentration–carbon and climate–carbon cycle feedbacks do not combine linearly to the overall carbon cycle feedback. In this model, the carbon sinks on land and in the ocean are less efficient when exposed to the combined effect of elevated CO2 and climate change than to the linear combination of the two. The land accounts for about 80% of the nonlinearity, with the ocean accounting for the remaining 20%. On land, this nonlinearity is associated with the different response of vegetation and soil carbon uptake to climate in the presence or absence of the CO2 fertilization effect. In the ocean, the nonlinear response is caused by the interaction of changes in physical properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that postulate linearity in the system’s response may not be adequate.

Corresponding author address: Kirsten Zickfeld, Department of Geography, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada. E-mail: kzickfel@sfu.ca
Save