• Adcroft, A., , C. Hill, , and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., , J. M. Campin, , C. Hill, , and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 28452863.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., , R. A. Locarnini, , T. P. Boyer, , A. V. Mishonov, , and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Bacastow, R., , and E. Maier-Reimer, 1990: Ocean-circulation model of the carbon cycle. Climate Dyn., 4, 95125.

  • Bard, E., , G. Raisbeck, , F. Yiou, , and J. Jouzel, 2000: Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, 52B, 985992.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., , A. Dispert, , M. Visbeck, , S. R. Rintoul, , and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869.

    • Search Google Scholar
    • Export Citation
  • Broecker, W., , and S. Barker, 2007: A 190 permil drop in atmosphere’s Delta 14-C during the “Mystery Interval” (17.5 to 14.5 kyr). Earth Planet. Sci. Lett., 256, 9099.

    • Search Google Scholar
    • Export Citation
  • Carsey, F. D., 1980: Microwave observations of the Wedell Polynya. Mon. Wea. Rev., 108, 20312044.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific and El Niño. Nat. Geosci., 3, 391397.

  • Conkright, M. E., , R. A. Locarnini, , H. E. Garcia, , T. D. O’Brien, , T. P. Boyer, , C. Stephens, , and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analysis, Data Statistics, and Figures. National Oceanographic Data Center, CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., , S. G. Alderson, , B. A. King, , and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and S. P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Domack, E., , A. Leventer, , R. Dunbar, , F. Taylor, , S. Brachfeld, , and C. Sjunneskog, 2001: Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene palaeoenvironmental reference for the circum-Antarctic. Holocene, 11, 19.

    • Search Google Scholar
    • Export Citation
  • Druffel, E. R. M., 1997: Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate. Proc. Natl. Acad. Sci. USA, 94, 83548361.

    • Search Google Scholar
    • Export Citation
  • Druffel, E. R. M., , S. Griffin, , J. Hwang, , T. Kimoda, , S. R. Beaupre, , K. C. Druffel-Rodriguez, , G. M. Santos, , and J. Southon, 2004: Variability of monthly radiocarbon during the 1760s in corals from the Galapagos Islands. Radiocarbon, 46, 627631.

    • Search Google Scholar
    • Export Citation
  • Druffel, E. R. M., , S. Griffin, , S. R. Beaupre, , and R. B. Dunbar, 2007: Oceanic climate and circulation changes during the past four centuries from radiocarbon in corals. Geophys. Res. Lett., 34, L09601, doi:10.1029/2006GL028681.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., , K. Caldeira, , J. Selvaggi, , and M. I. Hoffert, 1997: Effects of subgrid-scale mixing parameterizations on simulated distributions of natural C-14, temperature, and salinity in a three-dimensional ocean general circulation model. J. Phys. Oceanogr., 27, 498523.

    • Search Google Scholar
    • Export Citation
  • Fallon, S. J., , and T. P. Guilderson, 2008: Surface water processes in the Indonesian throughflow as documented by a high-resolution coral Delta C-14 record. J. Geophys. Res., 113, C09001, doi:10.1029/2008JC004722.

    • Search Google Scholar
    • Export Citation
  • Farnetti, R., , T. L. Delworth, , A. Rosati, , S. Griffies, , and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Fukamachi, Y., , S. Rintoul, , J. A. Church, , K. Aoki, , A. Sokolov, , M. A. Rosenberg, , and M. Wakatsuchi, 2010: Strong export of Antarctic Bottom Water east of the Kerguelen plateau. Nat. Geosci., 3, 327331.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., , S. L. Jaccard, , T. F. Pedersen, , D. M. Sigman, , G. H. Haug, , M. Cook, , J. R. Southon, , and R. Francois, 2007: Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature, 449, 890893.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., , A. Gnanadesikan, , J. Dunne, , and M. R. Hiscock, 2010: Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7, 10431064.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopyncnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Ginoux, P., , L. W. Horowitz, , V. Ramaswamy, , I. V. Geogdzhayev, , B. N. Holben, , G. Stenchikov, , and X. Tie, 2006: Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. J. Geophys. Res., 111, D22210, doi:10.1029/2005JD006707.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , J. P. Dunne, , R. M. Key, , K. Matsumoto, , J. L. Sarmiento, , R. D. Slater, , and P. S. Swathi, 2004: Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochem. Cycles, 18, GB4010, doi:10.1029/2003GB002097.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , S. M. Griffies, , and B. L. Samuels, 2007: Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modell., 16, 116.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., , M. Visbeck, , and J. Comiso, 2007: A possible link between the Weddell Polynya and the Southern Annular Mode. J. Climate, 20, 25582571.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., , R. D. Susanto, , A. Ffield, , B. A. Huber, , W. Pranowo, , and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, doi:10.1029/2008GL036372.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2009: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, 444 pp.

  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579.

  • Grumet, N. S., , P. B. Duffy, , M. E. Wickett, , K. Caldeira, , and R. B. Dunbar, 2005: Intrabasin comparison of surface radiocarbon levels in the Indian Ocean between coral records and three-dimensional global ocean models. Global Biogeochem. Cycles, 19, GB2010, doi:10.1029/2004GB002289.

    • Search Google Scholar
    • Export Citation
  • Guilderson, T. P., , D. P. Schrag, , M. Kashgarian, , and J. Southon, 1998: Radiocarbon variability in the western equatorial Pacific inferred from a high-resolution coral record from Nauru Island. J. Geophys. Res., 103, 24 64124 650.

    • Search Google Scholar
    • Export Citation
  • Guilderson, T. P., , K. Caldeira, , and P. B. Duffy, 2000: Radiocarbon as a diagnostic tracer in ocean and carbon cycle modeling. Global Biogeochem. Cycles, 14, 887902.

    • Search Google Scholar
    • Export Citation
  • Guilderson, T. P., , S. Fallon, , M. D. Moore, , D. P. Schrag, , and C. D. Charles, 2009: Seasonally resolved surface water Δ14C variability in the Lombok Strait: A coralline perspective. J. Geophys. Res., 114, C07029, doi:10.1029/2008JC004876.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., , A. Wittenberg, , A. Fedorov, , M. Collins, , C. Wang, , A. Capotondi, , G. J. van Oldenborgh, , and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., , V. Ramaswamy, , and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283, 12991303.

    • Search Google Scholar
    • Export Citation
  • Hughen, K. A., , J. T. Overpeck, , S. J. Lehman, , M. Kashgarian, , J. Southon, , L. C. Peterson, , R. Alley, , and D. M. Sigman, 1998: Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature, 391, 6568.

    • Search Google Scholar
    • Export Citation
  • Hughen, K. A., , S. Lehman, , J. Southon, , J. Overpeck, , O. Marchal, , C. Herring, , and J. Turnbull, 2004: C-14 activity and global carbon cycle changes over the past 50,000 years. Science, 303, 202207.

    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., , P. Riisager, , B. H. Jacobsen, , R. Muscheler, , I. Snowball, , and M. S. Seidenkrantz, 2009: Taking the pulse of the Sun during the Holocene by joint analysis of C-14 and Be-10. Geophys. Res. Lett., 36, L16701, doi:10.1029/2009GL039439.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing—A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , G. Danabasoglu, , J. C. McWilliams, , P. R. Gent, , and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518536.

    • Search Google Scholar
    • Export Citation
  • Lee, H. C., , A. Rosati, , and M. J. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic. Ocean Modell., 11, 464477.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Locarnini, R. A., , A. V. Mishonov, , J. I. Antonov, , T. P. Boyer, , and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Manizza, M., , C. Le Quere, , A. J. Watson, , and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32, L05603, doi:10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific decadal climate oscillation wth impacts on salmon. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., , T. F. Stocker, , F. Joos, , A. Indermuhle, , T. Blunier, , and J. Tschumi, 1999: Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Climate Dyn., 15, 341354.

    • Search Google Scholar
    • Export Citation
  • Marchitto, T., , S. J. Lehman, , J. D. Ortiz, , J. Fluckiger, , and A. van Geen, 2007: Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science, 316, 14561459.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2002: Analysis of recent circulation and thermal advection change in the northern Antarctic Peninsula. Int. J. Climatol., 22, 15571567.

    • Search Google Scholar
    • Export Citation
  • Masarik, J., , and J. Beer, 1999: Simulation of particle fluxes and cosmogenic nuclide production in the earth’s atmosphere. J. Geophys. Res., 104, 12 09912 111.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., and Coauthors, 2004: Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett., 31, L07303, doi:10.1029/2003GL018970.

    • Search Google Scholar
    • Export Citation
  • McCormac, F. G., , A. G. Hogg, , P. G. Blackwell, , C. E. Buck, , T. F. G. Higham, , and P. J. Reimer, 2004: SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon, 46, 10871092.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., , A. Schmittner, , A. J. Weaver, , and J. F. Adkins, 2003: Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: A comparison between simulated and observed radiocarbon ages. Paleoceanography, 18, 1023, doi:10.1029/2002PA000762.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251273.

  • Muscheler, R., , F. Joos, , J. Beer, , S. A. Muller, , M. Vonmoos, , and I. Snowball, 2007: Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev., 26, 8297.

    • Search Google Scholar
    • Export Citation
  • Najjar, R., , and J. C. Orr, cited 1998: Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. [Available online at http://www.cgd.ucar.edu/oce/OCMIP/design.pdf.]

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , and A. Gnanadesikan, 1998: Transient response in a z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev., 126, 32483270.

    • Search Google Scholar
    • Export Citation
  • Redfield, A. C., , B. H. Ketchum, , and F. A. Richards, 1963: The influence of organisms on the composition of sea-water. The Sea, M. N. Hill, Ed., John Wiley & Sons, 26–77.

    • Search Google Scholar
    • Export Citation
  • Reimer, P. J., and Coauthors, 2004: IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon, 46, 10291058.

  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., , M. A. Cane, , and D. P. Schrag, 1997: Seasonal v ariability of sea surface Delta C-14 in the equatorial Pacific in an ocean circulation model. J. Geophys. Res., 102, 18 62718 639.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., , D. P. Schrag, , M. A. Cane, , and N. H. Naik, 2000: The bomb C-14 transient in the Pacific Ocean. J. Geophys. Res., 105, 84898512.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., , O. Aumont, , G. Madec, , C. Menkes, , B. Blanke, , P. Monfray, , J. C. Orr & , and D. P. Schrag , 2004: Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophys. Res. Lett., 31, L14314, doi:10.1029/2004GL019764.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2011: Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Climate Past Discuss., 7, 347379.

    • Search Google Scholar
    • Export Citation
  • Rubin, S. I., , and R. M. Key, 2002: Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method. Global Biogeochem. Cycles, 16, 1105, doi:10.1029/2001GB001432.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., 2003: Southern Ocean sea ice and radiocarbon ages of glacial bottom waters. Earth Planet. Sci. Lett., 213, 5362.

  • Shackleton, N. J., , J. C. Duplessy, , M. Arnold, , P. Maurice, , M. A. Hall, , and J. Cartlidge, 1988: Radiocarbon age of last glacial Pacific deep water. Nature, 335, 708711.

    • Search Google Scholar
    • Export Citation
  • Siegenthaler, U., , M. Heimann, , and H. Oeschger, 1980: C-14 variations caused by changes in the global carbon cycle. Radiocarbon, 22, 177191.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263.

    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., , S. Fallon, , C. Waelbroeck, , E. Michel, , and S. Barker, 2010: Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328, 11471151.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., , D. A. LeBel, , R. A. Fine, , M. Rhein, , and D. Kieke, 2007: On past and future changes of the ocean’s meridional overturning circulation. Past and Future Changes of the Ocean’s Meridional Overturning Circultion: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 119–130.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., , and J. C. McWilliams, 2003: Anisotropic horizontal viscosity for ocean models. Ocean Modell., 5, 129156.

  • Stocker, T. F., , and D. G. Wright, 1996: Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography, 11, 773795.

    • Search Google Scholar
    • Export Citation
  • Stuiver, M., , and H. A. Polach, 1977: Reporting of 14C data. Radiocarbon, 19, 355363.

  • Stuiver, M., , and P. D. Quay, 1980: Changes in atmospheric C-14 attributed to a variable sun. Science, 207, 1119.

  • Suess, E., 1953: Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea. Nuclear Processes in Geologic Settings, National Research Council Committee on Nuclear Science, Ed., University of Chicago Press, 52–56.

    • Search Google Scholar
    • Export Citation
  • Suess, E., 1968: Climatic Changes, Solar Activity, and the Cosmic-Ray Production Rate of the Natural Radiocarbon. Meteor. Monogr., No. 8, Amer. Meteor Soc., 146–150.

    • Search Google Scholar
    • Export Citation
  • Tillinger, D., , and A. L. Gordon, 2009: Fifty years of the Indonesian Throughflow. J. Climate, 22, 63426355.

  • Toggweiler, J. R., , and B. Samuels, 1993: New radiocarbon constraints on the upwelling of abyssal water to the ocean’s surface. The Global Carbon Cycle, M. Heimann, Ed., Springer-Verlag, 333–365.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , K. Dixon, , and K. Bryan, 1989: Simulations of radiocarbon in a coarse-resolution world ocean model 1: Steady-state prebomb distributions. J. Geophys. Res., 94, 82178242.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , K. Dixon, , and W. S. Broecker, 1991: The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res., 96, 20 46720 497.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , J. L. Russell, , and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and A. T. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2009: A station-based southern annular mode index from 1884 to 2005. J. Climate, 22, 940950.

  • Wanninkhof, R., 1992: Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res., 97, 73737382.

  • Winton, M., , and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23, 13891410.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N. C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., , and K. Aagaard, 2005: Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys. Res. Lett., 32, L02602, doi:10.1029/2004GL021747.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 189 31
PDF Downloads 65 65 13

Climate Variability and Radiocarbon in the CM2Mc Earth System Model

View More View Less
  • 1 Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
  • | 2 Princeton University, Princeton, New Jersey
  • | 3 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 4 Laboratoire des Sciences du Climat et l’Environnment, Gif-sur-Yvette, France
© Get Permissions
Restricted access

Abstract

The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.

Corresponding author address: Eric D. Galbraith, Dept. of Earth and Planetary Science, McGill University, 3450 University St., Montreal QC H3A 2A7, Canada. E-mail: eric.galbraith@mcgill.ca

Abstract

The distribution of radiocarbon (14C) in the ocean and atmosphere has fluctuated on time scales ranging from seasons to millennia. It is thought that these fluctuations partly reflect variability in the climate system, offering a rich potential source of information to help understand mechanisms of past climate change. Here, a long simulation with a new, coupled model is used to explore the mechanisms that redistribute 14C within the earth system on interannual to centennial time scales. The model, the Geophysical Fluid Dynamics Laboratory Climate Model version 2 (GFDL CM2) with Modular Ocean Model version 4p1(MOM4p1) at coarse-resolution (CM2Mc), is a lower-resolution version of the Geophysical Fluid Dynamics Laboratory’s CM2M model, uses no flux adjustments, and is run here with a simple prognostic ocean biogeochemistry model including 14C. The atmospheric 14C and radiative boundary conditions are held constant so that the oceanic distribution of 14C is only a function of internal climate variability. The simulation displays previously described relationships between tropical sea surface 14C and the model equivalents of the El Niño–Southern Oscillation and Indonesian Throughflow. Sea surface 14C variability also arises from fluctuations in the circulations of the subarctic Pacific and Southern Ocean, including North Pacific decadal variability and episodic ventilation events in the Weddell Sea that are reminiscent of the Weddell Polynya of 1974–76. Interannual variability in the air–sea balance of 14C is dominated by exchange within the belt of intense “Southern Westerly” winds, rather than at the convective locations where the surface 14C is most variable. Despite significant interannual variability, the simulated impact on air–sea exchange is an order of magnitude smaller than the recorded atmospheric 14C variability of the past millennium. This result partly reflects the importance of variability in the production rate of 14C in determining atmospheric 14C but may also reflect an underestimate of natural climate variability, particularly in the Southern Westerly winds.

Corresponding author address: Eric D. Galbraith, Dept. of Earth and Planetary Science, McGill University, 3450 University St., Montreal QC H3A 2A7, Canada. E-mail: eric.galbraith@mcgill.ca
Save