• Allen, R. G., , L. S. Pereira, , D. Raes, , and M. Smith, 1998: Crop evapotranspiration guidelines for computing crop water requirements. Food and Agriculture Organization Irrigation and Drainage Paper 56, 328 pp.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., , and H. Stricker, 1979: An advection–aridity approach to estimate actual regional evapotranspiration. Water Resour. Res., 15, 443449.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., , and M. B. Parlange, 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396, 30.

  • Budyko, M. I., 1956: The Heat Balance of the Earth’s Surface. Gidrometeoizdat, 255 pp.

  • Buishand, T. A., 1982: Some methods for testing the homogeneity of rainfall records. J. Hydrol., 58, 1127.

  • Bureau of Hydrology of the Changjiang Water Resources Commission, 2000: Manual of flood prevention and water regime of Changjiang (in Chinese). Bureau of Hydrology of the Changjiang Water Resources Commission, 248 pp.

    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, N., , and M. Hulme, 1997: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteor., 87, 5573.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , G. Gao, , C.-Y. Xu, , and G. Ren, 2005: Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Climate Res., 28, 123132.

    • Search Google Scholar
    • Export Citation
  • Cohen, S., , A. Ianetz, , and G. Stanhill, 2002: Evaporative climate changes at Bet–Dagan, Israel, 1964–1998. Agric. For. Meteor., 111, 8391.

    • Search Google Scholar
    • Export Citation
  • Cong, Z. T., , D. W. Yang, , and G. H. Ni, 2009: Does evaporation paradox exist in China? Hydrol. Earth Syst. Sci., 13, 357366.

  • Crago, R. D., 1996: Comparison of the evaporative fraction and the Priestley-Taylor for parameterizing daytime evaporation. Water Resour. Res., 32, 14031409.

    • Search Google Scholar
    • Export Citation
  • Crago, R. D., , and W. Brutsaert, 1992: A comparison of several evaporation equations. Water Resour. Res., 28, 951954.

  • Flint, A. J., , and S. W. Childs, 1991: Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agric. For. Meteor., 56, 247260.

    • Search Google Scholar
    • Export Citation
  • Gao, C., , M. Gemmer, , X. Zeng, , B. Liu, , B. Su, , and Y. Wen, 2010: Projected streamflow in the Huaihe River Basin (2010-2100) using artificial neural networks (ANN). Stochastic Environ. Res. Risk Assess., 24, 685697.

    • Search Google Scholar
    • Export Citation
  • Gao, G., , D. Chen, , G. Ren, , Y. Chen, , and Y. Liao, 2006: Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J. Geogr. Sci., 16, 312.

    • Search Google Scholar
    • Export Citation
  • Gao, G., , D. Chen, , C.-Y. Xu, , and E. Simelton, 2007: Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res., 112, D11120, doi:10.1029/2006JD008010.

    • Search Google Scholar
    • Export Citation
  • Golubev, V. S., , J. H. Lawrimore, , P.Ya. Groisman, , N. A. Speranskaya, , S. A. Zhuvarin, , M. J. Menne, , T. C. Petersen, , and R. W. Malone, 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 28, 26652668.

    • Search Google Scholar
    • Export Citation
  • Gong, L. B., , C. Y. Xu, , D. L. Chen, , S. Halldin, , and Y. Q. D. Chen, 2006: Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol., 329, 620629.

    • Search Google Scholar
    • Export Citation
  • Granger, R. J., , and D. M. Gray, 1989: Evaporation from natural nonsaturated surfaces. J. Hydrol., 111, 2129.

  • Hagemann, S., , K. Arpe, , and E. Roeckner, 2006: Evaluation of the hydrological cycle in the ECHAM5 model. J. Climate, 19, 38103827.

  • Hobbins, M. T., , J. A. Ramirez, , and T. C. Brown, 2001: Trends in regional evapotranspiration across the United States under the complementary relationship hypothesis. Proc. AGU Hydrology Days, Fort Collins, CO, Amer. Geophys. Union, 106–121.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., , J. A. Ramirez, , and T. C. Brown, 2004: Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31, L13503, doi:10.1029/2004GL019846.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., , A. G. Dai, , M. L. Roderick, , and G. D. Farquhar, 2008: Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett., 35, L12403, doi:10.1029/2008GL033840.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., , and J. D. Gibbons, 1981: Rank Correlation Methods. 5th ed. Edward Arnold, 260 pp.

  • Liu, B., 2009: Temporal and spatial characters of water cycle elements in the upper reaches of the Yangtze River basin (in Chinese). Ph.D. dissertation, Nanjing Institute for Geography and Limnology, Chinese Academy of Science, 133 pp.

    • Search Google Scholar
    • Export Citation
  • Liu, B., , T. Jiang, , G. Y. Ren, , and K. Fraedrich, 2008: Projected surface water resource of the Yangtze River basin before 2050. Adv. Climate Change Res., 4, 145150.

    • Search Google Scholar
    • Export Citation
  • Liu, C. M., , and Y. Zeng, 2004: Changes of pan evaporation in the recent 40 years in the Yellow River basin. Int. Water Resour. Assoc., 29, 510516.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and Coauthors, 2010: Change of actual evapotranspiration of Poyang Lake watershed and associated influencing factors in the past 50 years (in Chinese). Resour. Environ. Yangtze Basin, 19, 139145.

    • Search Google Scholar
    • Export Citation
  • Liu, L. L., , T. Jiang, , and F. Yuan, 2009: Observed (1961–2007) and projected (2011–60) climate change in the Pearl River basin. Adv. Climate Change Res., 5, 209214.

    • Search Google Scholar
    • Export Citation
  • Liu, S. M., , R. Sun, , Z. Sun, , X. Li, , and C. Liu, 2004: Comparison of different complementary relationship models for regional evapotranspiration estimation (in Chinese). Acta Geogr. Sin., 59, 331340.

    • Search Google Scholar
    • Export Citation
  • Maniak, U., 1997: Hydrologie und Wasserwirtschaft. Springer, 666 pp.

  • Marsland, S. J., , H. Haak, , J. H. Jungclaus, , M. Latif, , and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127.

    • Search Google Scholar
    • Export Citation
  • Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significant to the science and practice of hydrology. J. Hydrol., 66, 176.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., , and M. Wild, 2002: Is the hydrological cycle accelerating? Science, 298, 13451346.

  • Penman, H. L., 1948: Natural evaporation from open water, bare and grass. Proc. Roy. Soc. London, A193, 120145.

  • Peterson, T. C., , V. S. Golubev, , and P. Y. Groisman, 1995: Evaporation losing its strength. Nature, 337, 687688.

  • Pinker, R. T., , B. Zhang, , and E. G. Dutton, 2005: Do satellites detect trends in surface solar radiation? Science, 308, 850854.

  • Priestley, C. H. B., , and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192.

    • Search Google Scholar
    • Export Citation
  • Qin, N. X., , T. Jiang, , and C. Y. Xu, 2005: Trends and abruption analysis on the discharge in the Yangtze River basin (in Chinese). Resour. Environ. Yangtze Basin, 14, 589594.

    • Search Google Scholar
    • Export Citation
  • Ramirez, J. A., , M. T. Hobbins, , and T. C. Brown, 2005: Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys. Res. Lett., 32, L15401, doi:10.1029/2005GL023549.

    • Search Google Scholar
    • Export Citation
  • Ren, G. Y., , and J. Guo, 2006: Change in pan evaporation and the influential factors over China: 1956–2000 (in Chinese). J. Nat. Resour., 21, 3144.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 14101411.

  • Roderick, M. L., , and G. D. Farquhar, 2004: Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol., 24, 10771090.

  • Roderick, M. L., , and G. D. Farquhar, 2005: Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol., 25, 20312039.

  • Roderick, M. L., , L. D. Rotstayn, , G. D. Farquhar, , and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, doi:10.1029/2007GL031166.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , M. T. Hobbins, , and G. D. Farquhar, 2009: Pan evaporation trends and the terrestrial water balance. Energy balance and interpretation. Geogr. Compass., 312, 761780.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5, Part I: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. B., , and W. R. Rouse, 1976: Simple models for calculating evaporation from dry and wet tundra surfaces. Arct. Alp. Res., 8, 263274.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, doi:10.1029/2008GL036584.

    • Search Google Scholar
    • Export Citation
  • Thomas, A., 2000: Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Climatol., 20, 381396.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., , J. Vila-Guerau de Arellano, , and A. J. Teuling, 2010: Land-atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate. Geophys. Res. Lett., 37, L21401, doi:10.1029/2010GL045374.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , T. Jiang, , O. Bothe, , and K. Fraedrich, 2007: Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theor. Appl. Climatol., 90, 1323.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, 308, 847850.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., , and D. Chen, 2005: Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol. Processes, 19, 37173734.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., , and V. P. Singh, 2005: Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol., 308, 105121.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., , L. Gong, , T. Jiang, , and D. L. Chen, 2006a: Decreasing reference evapotranspiration in a warming climate: A case of Changjiang (Yangtze River) catchment during 1970– 2000. Adv. Atmos. Sci., 23, 513520.

    • Search Google Scholar
    • Export Citation
  • Xu, C. Y., , L. Gong, , T. Jiang, , D. L. Chen, , and V. P. Singh, 2006b: Analysis of spatial distribution and temporal trend of reference evapotranspiration in Changjiang catchments. J. Hydrol., 327, 8193.

    • Search Google Scholar
    • Export Citation
  • Yang, D. W., , F. Sun, , Z. Liu, , Z. Cong, , and Z. Lei, 2006: Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophys. Res. Lett., 33, L18402, doi:10.1029/2006GL027657.

    • Search Google Scholar
    • Export Citation
  • Yang, D. W., , F. Sun, , Z. Liu, , Z. Cong, , G. Ni, , and Z. Lei, 2007: Analyzing spatial and temporal variability of annual water-energy balance in non-humid regions of China using the Budyko hypothesis. Water Resour. Res., 43, W04426, doi:10.1029/2006WR005224.

    • Search Google Scholar
    • Export Citation
  • Yin, Y. H., , S. H. Wu, , G. Chen, , and E. F. Dai, 2009: Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. Appl. Climatol., 101, 1928, doi:10.1007/s00704-009-0197-7.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. F., , B. D. Su, , T. Jiang, , and Z. H. Chen, 2007: Projection of future climate change in the Yangtze River basin for 2001-2050 (in Chinese). Adv. Climate Change Res., 3, 293298.

    • Search Google Scholar
    • Export Citation
  • Zhai, J. Q., , X. F. Zeng, , B. D. Su, , and T. Jiang, 2009: Patterns of dryness/wetness in China before 2050 projected by the ECHAM5 model (in Chinese). Adv. Climate Change Res., 5, 220225.

    • Search Google Scholar
    • Export Citation
  • Zhan, C. S., , X. Jun, , L. Z. Liang, , and N. C. Wen, 2005: Modelling the spatial distribution of actual terrestrial evapotranspiration using a hydrological and meteorological approach. Regional Hydrological Impacts of Climatic Change—Hydroclimatic Variability, S. Franks et al., Eds., International Association of Hydrological Sciences, Vol. 296, IAHS, 283–290.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. Q., , Y. Ren, , Z. Y. Yin, , Z. Y. Lin, , and D. Zheng, 2009: Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res., 114, D15105, doi:10.1029/2009JD011753.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., , C. M. Liu, , Y. H. Tang, , and Y. H. Yang, 2007: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res., 112, D12110, doi:10.1029/2006JD008161.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z. X., , K. Fraedrich, , T. Jiang, , and J. C. Zhang, 2007: Projection of future precipitation extremes in the Yangtze River basin for 2001-2050 (in Chinese). Adv. Climate Change Res., 3, 340344.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 3
PDF Downloads 19 19 1

Trends of Calculated and Simulated Actual Evaporation in the Yangtze River Basin

View More View Less
  • 1 Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Hohai University, Nanijng, China
  • | 3 National Climate Center, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

Actual evaporation in the Yangtze River basin is calculated by the complementary relationship approach—that is, the advection–aridity (AA) model with parameter validation from 1961 to 2007—and simulated by the general circulation model (GCM) ECHAM5–Max Planck Institute Ocean Model (MPI-OM) from 1961 to 2000. Trends of annual and seasonal estimated actual evaporation and air temperature, net radiation, saturation vapor pressure deficit, wind speed, and precipitation are examined by the linear regression method and nonparametric Mann–Kendall test. The stepwise regression method is used to analyze the significance to reference evapotranspiration of independent variables.

Results show that a significant decreasing trend in annual reference evaporation is caused by a significant decline in wind speed. The annual actual evaporation decreases in the upper and midlower Yangtze reaches; more significantly in the AA model [–9.3 mm (10 yr)−1] than in the GCM [−3.6 mm (10 yr)−1]. Significant negative trends are found in spring and autumn, but they show reverse trends in summer and winter within the two methods, which is caused by the different contributors to the seasonal actual evaporation in the two methods.

Decreasing net radiation is the main contributor to annual and spring actual evaporation in the two methods. Decreasing precipitation and net radiation are the main contributors to decreasing autumn actual evaporation in the AA model and the GCM. Increasing net radiation and decreasing precipitation are the main contributors to summer and winter actual evaporation in the GCM. Decreasing net radiation and increasing precipitation are the main contributors to decreasing summer and increasing winter actual evaporation in the AA model.

Corresponding author address: Dr. Buda Su, National Climate Center, 46, Zhongguancun Nandajie, Haidian 100081, Beijing, China. E-mail: subd@cma.gov.cn

Abstract

Actual evaporation in the Yangtze River basin is calculated by the complementary relationship approach—that is, the advection–aridity (AA) model with parameter validation from 1961 to 2007—and simulated by the general circulation model (GCM) ECHAM5–Max Planck Institute Ocean Model (MPI-OM) from 1961 to 2000. Trends of annual and seasonal estimated actual evaporation and air temperature, net radiation, saturation vapor pressure deficit, wind speed, and precipitation are examined by the linear regression method and nonparametric Mann–Kendall test. The stepwise regression method is used to analyze the significance to reference evapotranspiration of independent variables.

Results show that a significant decreasing trend in annual reference evaporation is caused by a significant decline in wind speed. The annual actual evaporation decreases in the upper and midlower Yangtze reaches; more significantly in the AA model [–9.3 mm (10 yr)−1] than in the GCM [−3.6 mm (10 yr)−1]. Significant negative trends are found in spring and autumn, but they show reverse trends in summer and winter within the two methods, which is caused by the different contributors to the seasonal actual evaporation in the two methods.

Decreasing net radiation is the main contributor to annual and spring actual evaporation in the two methods. Decreasing precipitation and net radiation are the main contributors to decreasing autumn actual evaporation in the AA model and the GCM. Increasing net radiation and decreasing precipitation are the main contributors to summer and winter actual evaporation in the GCM. Decreasing net radiation and increasing precipitation are the main contributors to decreasing summer and increasing winter actual evaporation in the AA model.

Corresponding author address: Dr. Buda Su, National Climate Center, 46, Zhongguancun Nandajie, Haidian 100081, Beijing, China. E-mail: subd@cma.gov.cn
Save