• Barkstrom, B., , E. Harrison, , G. Smith, , R. Green, , J. Kibler, , and R. Cess, and The ERBE Science Team, 1989: Earth Radiation Budget (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70, 12541262.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., 2011: Planetary albedo in strongly forced climate, as simulated by the CMIP3 models. Theor. Appl. Climatol., doi:10.1007/s00704-011-0411-2, in press.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., , H. Rodhe, , R. J. Charlson, , A. M. L. Ekman, , and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand climate change feedback processes? J. Climate, 19, 34453482.

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619.

  • Cahalan, R. F., , W. Ridgway, , W. J. Wiscombe, , T. L. Bell, , and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342460.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., , and K. T. Lee, 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci., 53, 12031208.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , W. B. Rossow, , D. Randall, , and J. L. Scramm, 1996: Overview of Arctic cloud radiation characteristics. J. Climate, 9, 17311762.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., , and S. G. Warren, 2010: Interannual variations of Arctic cloud types in relation to sea ice. J. Climate, 23, 42164232.

  • Enderton, D., , and J. Marshall, 2009: Controls on the total dynamical heat transport of the atmosphere and oceans. J. Atmos. Sci., 66, 15931611.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., , and K. E. Trenberth, 2008a: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., , and K. E. Trenberth, 2008b: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325.

    • Search Google Scholar
    • Export Citation
  • Gorodetskaya, I. V., , M. A. Cane, , L.-B. Tremblay, , and A. Kaplan, 2006: The effects of sea ice and land snow concentrations on planetary albedo from the Earth Radiation Budget Experiment. Atmos.–Ocean, 44, 195205.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , and S. G. Warren, 2003: Cloud climatology for land stations worldwide, 1971–1996. Numerical data package NDP-026D, Carbon Dioxide Information Analysis Center, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568.

  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hummel, J. R., , and R. A. Reck, 1979: A global surface albedo model. J. Appl. Meteor., 18, 239253.

  • Kang, S. M., , I. M. Held, , D. M. W. Frierson, , and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , T. P. Ackerman, , J. H. Mather, , and E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , N. G. Loeb, , P. Minnis, , J. A. Francis, , T. P. Charlock, , D. A. Rutan, , E. E. Clothiaux, , and S. Sun-Mack, 2006: Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from CERES data set. Geophys. Res. Lett., 33, L19804, doi:10.1029/2006GL026685.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , and V. Ramanathan, 2008: Solar radiation and radiative forcing due to aerosols. J. Geophys. Res., 113, D02203, doi:10.1029/2007JD008434.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., , S. K. Gupta, , A. C. Wilber, , and V. E. Sothcott, 2010: Validation of the CERES edition 2B surface-only flux algorithms. J. Appl. Meteor. Climatol., 49, 164180.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Towards optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., 1999: The influence of solar zenith angle and cloud type on cloud radiative forcing at the surface in the Arctic. J. Climate, 12, 147158.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., , D. M. Sonechkin, , K. Holmgren, , N. M. Datsenko, , and W. Karlén, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613617, doi:10.1038/nature03265.

    • Search Google Scholar
    • Export Citation
  • Qu, X., , and A. Hall, 2005: Surface contribution to planetary albedo variability in the cryosphere regions. J. Climate, 18, 52395252.

  • Roesch, A., 2006: Evaluation of surface albedo and snow cover in AR4 coupled climate models. J. Geophys. Res., 111, D15111, doi:10.1029/2005JD006473.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., , F. G. Rose, , N. M. Smith, , T. P. Charlock, 2001: Validation data set for CERES surface and atmospheric radiation budget (SARB). WCRP/GEWEX Newsletter, Vol. 11, International GEWEX Project Office, Silver Spring, MD, 11–12.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139.

  • Taylor, K. E., , M. Crucifix, , P. Braconnot, , C. D. Hewitt, , C. Doutriaux, , A. J. Broccoli, , J. F. B. Mitchell, , and M. J. Webb, 2007: Estimating shortwave radiative forcing and response in climate models. J. Climate, 20, 25302543.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. T. Fasullo, 2009: Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett., 36, L07706, doi:10.1029/2009GL037527.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. T. Fasullo, , and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324.

  • Wielicki, B. A., , R. D. Cess, , M. D. King, , D. A. Randall, , and E. F. Harrison, 1995: Mission to planet Earth—Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 21252153.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee, , G. Louis Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 449 67
PDF Downloads 397 397 61

Atmospheric and Surface Contributions to Planetary Albedo

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.

Corresponding author address: Aaron Donohoe, University of Washington, 408 ATG Building, Box 351640, Seattle, WA 98195. E-mail: aaron@atmos.washington.edu

Abstract

The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.

Corresponding author address: Aaron Donohoe, University of Washington, 408 ATG Building, Box 351640, Seattle, WA 98195. E-mail: aaron@atmos.washington.edu
Save