• Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., , C. L. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , G. Magnusdottir, , R. Saravanan, , and A. S. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. A. Thomas, , and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., , S. C. Hardiman, , and P. J. Kushner, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 12081222.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , W. Chan, , D. J. Leathers, , J. R. Miller, , and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and N. Sennechael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , and M. Visbeck, 2002: Synchronous variability in the SH atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , and M. Raphael, 2006: Twentieth century simulation of the Southern Hemisphere in coupled models. Part II: Sea ice conditions and variability. Climate Dyn., 26, 229245.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , C. M. Bitz, , E. C. Hunke, , and W. H. Lipscomb, 2005: Mechanisms forcing an Antarctic dipole in simulated sea ice and surface ocean conditions. J. Climate, 18, 20522066.

    • Search Google Scholar
    • Export Citation
  • Honda, M., , J. Inoue, , and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Karoly, D. J., 1990: The role of transient eddies in low frequency zonal variations of the Southern Hemisphere circulations. Tellus, 42A, 4150.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A., , N. P. Gillett, , G. J. Marshall, , and J. A. Screen, 2009: Climate impacts of the southern annular mode simulated by the CMIP3 models. J. Climate, 22, 37513768.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , W. A. Robinson, , I. Blade, , N. M. J. Hall, , S. Peng, , and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256.

    • Search Google Scholar
    • Export Citation
  • Lachlan-Cope, T., 2005: Role of sea ice in forcing the winter climate of Antarctica in a global climate model. J. Geophys. Res., 110, D03110, doi:10.1029/2004JD004935.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136.

  • Limpasuvan, V., , and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429.

  • Liu, J., , X. Yuan, , D. Rind, , and D. G. Martinson, 2002: Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys. Res. Lett., 29, 1679, doi:10.1029/2002GL015143.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , J. A. Curry, , and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, doi:10.1029/2003GL018732.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere. J. Climate, 16, 12121227.

  • Marshall, G., , and W. Connolley, 2006: The effect of changing Southern Hemisphere winter sea surface temperature on Southern Annular Mode strength. Geophys. Res. Lett., 33, L17717, doi:10.1029/2006GL026627.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., , and W. B. White, 1998: Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño–Southern Oscillation. J. Geophys. Res., 103, 24 57324 583.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1989: Coherent wave-zonal mean flow interactions in the troposphere. J. Atmos. Sci., 43, 11721188.

  • Raphael, M. N., 2003: Impact of observed sea-ice concentration on the Southern Hemisphere extratropical atmospheric circulation in summer. J. Geophys. Res., 108, 4687, doi:10.1029/2002JD003308.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., , and I. Simmonds, 2005: Southern Hemisphere annular mode variability and the role of optimal nonmodal growth. J. Atmos. Sci., 62, 19471961.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , and M. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20, 36773692.

  • Smith, T. M., , R. W. Reynolds, , R. E. Livezy, , and D. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , and R. C. Smith, 1997: Opposing Southern Ocean climate patterns as revealed by trends in regional sea ice coverage. Climatic Change, 37, 617639.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Watterson, I., 2001: Zonal wind vacillation and its interaction with the ocean: Implications for interannual variability and predictability. J. Geophys. Res., 106, 23 96523 975.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., 2008: Observed impact of subtropical-midlatitude South Atlantic SST anomalies on the atmospheric circulation. Geophys. Res. Lett., 35, L22803, doi:10.1029/2008GL035488.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., , and X. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, doi:10.1029/2009JD013574.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 16971717.

  • Yuan, X., , and D. G. Martinson, 2001: The Antarctic dipole and its predictability. Geophys. Res. Lett., 28, 36093612.

  • Yuan, X., , and C. Li, 2008: Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res., 113, C06S91, doi:10.1029/2006JC004067.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 2
PDF Downloads 20 20 3

Observed Evidence of an Impact of the Antarctic Sea Ice Dipole on the Antarctic Oscillation

View More View Less
  • 1 School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • | 2 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
© Get Permissions
Restricted access

Abstract

A lagged maximum covariance analysis (MCA) is applied to investigate the linear covariability between monthly sea ice concentration (SIC) and 500-mb geopotential height (Z500) in the Southern Hemisphere (SH). The dominant signal is the atmospheric forcing of SIC anomalies throughout the year, but statistically significant covariances are also found between austral springtime Z500 and prior SIC anomalies up to four months earlier. The MCA pattern is characterized by an Antarctic dipole (ADP)-like pattern in SIC and a positively polarized Antarctic Oscillation (AAO) in Z500. Such long lead-time covariance suggests the forcing of the AAO by persistent ADP-like SIC anomalies. The leading time of SIC anomalies provides an implication for skillful predictability of springtime atmospheric variability.

Corresponding author address: Qigang Wu, School of Atmospheric Sciences, Nanjing University, Nanjing, China. E-mail: qigangwu@nju.edu.cn

Abstract

A lagged maximum covariance analysis (MCA) is applied to investigate the linear covariability between monthly sea ice concentration (SIC) and 500-mb geopotential height (Z500) in the Southern Hemisphere (SH). The dominant signal is the atmospheric forcing of SIC anomalies throughout the year, but statistically significant covariances are also found between austral springtime Z500 and prior SIC anomalies up to four months earlier. The MCA pattern is characterized by an Antarctic dipole (ADP)-like pattern in SIC and a positively polarized Antarctic Oscillation (AAO) in Z500. Such long lead-time covariance suggests the forcing of the AAO by persistent ADP-like SIC anomalies. The leading time of SIC anomalies provides an implication for skillful predictability of springtime atmospheric variability.

Corresponding author address: Qigang Wu, School of Atmospheric Sciences, Nanjing University, Nanjing, China. E-mail: qigangwu@nju.edu.cn
Save