• Adler, R., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Allison, I., , R. Alley, , H. Fricker, , R. Thomas, , and R. Warner, 2009: Ice sheet mass balance and sea level. Antarct. Sci., 21, 413426.

  • Andersson, E., 2007: Data assimilation in the polar regions. ECMWF Newsletter, No. 112, ECMWF, Reading, United Kingdom, 10–15.

  • Andersson, E., and Coauthors, 2005: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86, 387402.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Coauthors, 2007: Analysis and forecast impact of the main humidity observing systems. Quart. J. Roy. Meteor. Soc., 133, 14731485.

    • Search Google Scholar
    • Export Citation
  • Anschütz, H., , O. Eisen, , H. Oerter, , D. Steinhage, , and M. Scheinert, 2007: Investigating small-scale variations of the recent accumulation rate in coastal Dronning Maud Land, East Antarctica. Ann. Glaciol., 46, 1421.

    • Search Google Scholar
    • Export Citation
  • Anschütz, H., , K. Müller, , E. Isaksson, , J. R. McConnell, , H. Fischer, , H. Miller, , M. Albert, , and J.-G. Winther, 2009: Revisiting sites of the South Pole Queen Maud Land traverses in East Antarctica: Accumulation data from shallow firn cores. J. Geophys. Res., 114, D24106, doi:10.1029/2009JD012204.

    • Search Google Scholar
    • Export Citation
  • Arthern, R. J., , D. P. Winebrenner, , and D. G. Vaughan, 2006: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J. Geophys. Res., 111, D06107, doi:10.1029/2004JD005667.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , and J. Shukla, 1988: Integration of space and in situ observations to study global climate change. Bull. Amer. Meteor. Soc., 69, 11301143.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , S. Hagemann, , and K. I. Hodges, 2004a: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and S. Hagemann, 2004b: Sensitivity of the ERA40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus, 56A, 456471.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Coauthors, 2007: The need for a dynamical climate reanalysis. Bull. Amer. Meteor. Soc., 88, 495501.

  • Bintanja, R., 1998: The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann. Glaciol., 27, 251259.

  • Bosilovich, M. G., and Coauthors, 2006: NASA’s modern era retrospective-analysis for research and applications. U.S. CLIVAR Variations, No. 4, International CLIVAR Project Office, Southampton, United Kingdom, 5–8. [Available online at http://www.usclivar.org/Newsletter/VariationsV4N2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , J. Chen, , F. R. Robertson, , and R. F. Adler, 2008: Evaluation of precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Bouchard, A., , F. Rabier, , V. Guidard, , and F. Karbou, 2010: Enhancements of satellite data assimilation over Antarctica. Mon. Wea. Rev., 138, 21492173.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1988: Snowfall in high southern latitudes. Rev. Geophys., 26, 149168.

  • Bromwich, D. H., , and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and S.-H. Wang, 2008: A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulations based upon ERA-40. Dyn. Atmos. Oceans, 44, 213243.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , R. L. Fogt, , K. I. Hodges, , and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112, D10111, doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., , J. Gregory, , P. Huybrechts, , M. Kuhn, , K. Lambeck, , M. Nhuan, , D. Qin, , and P. Woodworth, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. Houghton et al., Eds., Cambridge University Press, 639–693.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., , Y. H. Kuo, , D. Barker, , and S. R. H. Rizvi, 2006: Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 32833296.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., , and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879.

  • Dee, D., , and S. Uppala, 2008: Variational bias correction in ERA-Interim. ECMWF Tech. Memo. 575, 28 pp.

  • Dee, D., , and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841.

    • Search Google Scholar
    • Export Citation
  • Dee, D., , P. Berrisford, , P. Poli, , and M. Fuentes, 2009: ERA-Interim for climate monitoring. ECMWF Newsletter, No. 119, ECMWF, Reading, United Kingdom, 5–6. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/119.pdf.]

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., , and M. K. Yau, 2002: Large-scale mass balance effects of blowing snow and surface sublimation. J. Geophys. Res., 107, 4679, doi:10.1029/2001JD001251.

    • Search Google Scholar
    • Export Citation
  • Fernandoy, F., , H. Meyer, , H. Oerter, , F. Wilhelms, , W. Graf, , and J. Schwander, 2010: Temporal and spatial variation of stable-isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica. J. Glaciol., 56, 673687.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., and Coauthors, 2004: New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dyn., 23, 803813.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., , S. Urbini, , M. Proposito, , C. Scarchilli, , and S. Gandolfi, 2007: Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res., 112, F02032, doi:10.1029/2006JF000638.

    • Search Google Scholar
    • Export Citation
  • Fujita, K., , and O. Abe, 2006: Stable isotopes in daily precipitation at Dome Fuji, East Antarctica. Geophys. Res. Lett., 33, L18503, doi:10.1029/2006GL026936.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., , P. Lardeux, , and G. Krinner, 2007: The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adelie, Antarctica. J. Glaciol., 53, 635645.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., , O. Magand, , G. Krinner, , and M. Fily, 2009: Do climate models underestimate snow accumulation on the Antarctic plateau? A re-evaluation of/from in situ observations in East Wilkes and Victoria Land. Ann. Glaciol., 50, 6165.

    • Search Google Scholar
    • Export Citation
  • Guedj, S., , F. Karbou, , F. Rabier, , and A. Bouchard, 2010: Toward a better modelling of surface emissivity to improve AMSU data assimilation over Antarctica. IEEE Trans. Geosci. Remote Sens., 48, 19761985.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 13771403.

  • Healy, S., 2007: Operational assimilation of GPS radio occultation measurements at ECMWF. ECMWF Newsletter, No. 111, ECMWF, Reading, United Kingdom, 6–11.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , R. W. Grumbine, , D. H. Bromwich, , and R. I. Cullather, 1999: Surface energy balance of the NCEP MRF and NCEP/NCAR Reanalysis in Antarctic latitudes during FROST. Wea. Forecasting, 14, 851866.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., , D. H. Bromwich, , and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP/NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13, 39403952.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kameda, T., , H. Motoyama, , S. Fujita, , and S. Takahashi, 2008: Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J. Glaciol., 54, 107116.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., , D. F. Parrish, , J. C. Derber, , R. Treadon, , W.-S. Wu, , and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., , O. Magand, , I. Simmonds, , C. Genthon, , and J.-L. Dufresne, 2007: Simulated Antarctic precipitation and surface mass balance at the end of twentieth and twenty-first centuries. Climate Dyn., 28, 215230.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , S. J. Déry, , G. König-Langlo, , J. Ettema, , and P. K. Munneke, 2010: Modelling snowdrift sublimation on an Antarctic ice shelf. The Cryosphere, 4, 179190.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , and J.-G. Winther, 2005: Antarctic surface and subsurface snow and ice melt fluxes. J. Climate, 18, 14691481.

  • Liu, H., , K. Jezek, , B. Li, , and Z. Zhao, cited 2001: Radarsat Antarctic Mapping Project digital elevation model version 2. [Available online at http://nsidc.org/data/nsidc-0082.html.]

    • Search Google Scholar
    • Export Citation
  • Magand, O., , C. Genthon, , M. Fily, , G. Krinner, , G. Picard, , M. Frezzotti, , and A. Ekaykin, 2007: An up-to-date quality-controlled surface mass balance data set for the 90°–180°E Antarctic sector and 1950–2005 period. J. Geophys. Res., 112, D12106, doi:10.1029/2007JD008700.

    • Search Google Scholar
    • Export Citation
  • Magand, O., , G. Picard, , L. Brucker, , M. Fily, , and C. Genthon, 2008: Snow melting bias in microwave mapping of Antarctic snow accumulation. The Cryosphere, 2, 109115.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2002: Trends in Antarctic geopotential height and temperature: A comparison between radiosonde and NCEP-NCAR reanalysis data. J. Climate, 15, 659674.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., , and D. H. Bromwich, 2008: Advances in describing recent Antarctic climate variability. Bull. Amer. Meteor. Soc., 89, 12951306.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., , D. H. Bromwich, , and S.-H. Wang, 2006a: Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos. Trans. Roy. Soc. London, A364, 16831708.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., and Coauthors, 2006b: Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827831.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Poli, P., , S. B. Healy, , and D. P. Dee, 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990.

    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., , R. J. Arthern, , D. G. Vaughan, , and L. A. Edwards, 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, Vol. 27, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , J. L. Bamber, , M. R. van den Broeke, , C. Davis, , Y. Li, , W. J. van de Berg, , and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1, 106110.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 235 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Sakamoto, M., , and J. R. Christy, 2009: The influences of TOVS radiance assimilation on temperature and moisture tendencies in JRA-25 and ERA-40. J. Atmos. Oceanic Technol., 26, 14351455.

    • Search Google Scholar
    • Export Citation
  • Scarchilli, C., , M. Frezzotti, , P. Grigioni, , L. De Silvestri, , L. Agnoletto, , and S. Dolci, 2010: Extraordinary blowing snow transport events in East Antarctica. Climate Dyn., 34, 11951206.

    • Search Google Scholar
    • Export Citation
  • Schlosser, E., , K. W. Manning, , J. G. Powers, , M. G. Duda, , G. Birnbaum, , and K. Fujita, 2010: Characteristics of high-precipitation events in Dronning Maud Land, Antarctica. J. Geophys. Res., 115, D14107, doi:10.1029/2007JD008700.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , A. P. Barrett, , and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133, 34073430.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf.]

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , K. M. Willett, , P. D. Jones, , P. W. Thorne, , and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., , and A. Stohl, 2009: Asymmetries in the moisture origin of Antarctic precipitation. Geophys. Res. Lett., 36, L22803, doi:10.1029/2009GL040242.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , D. G. Martinson, , R. C. Smith, , X. Yuan, , and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., , G. J. Marshall, , and J. R. McConnell, 2008: A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys. Res. Lett., 35, L01706, doi:10.1029/2007GL032529.

    • Search Google Scholar
    • Export Citation
  • Tietäväinen, H., , and T. Vihma, 2008: Atmospheric moisture budget over Antarctica and the Southern Ocean based on the ERA-40 reanalysis. Int. J. Climatol., 28, 19771995.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. T. Fasullo, , and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Uppala, S. M., , D. Dee, , S. Kobayashi, , P. Berrisford, , and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/115_rev.pdf.]

    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., , M. R. van den Broeke, , C. H. Reijmer, , and E. van Meijgaard, 2005: Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol., 41, 97104.

    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., , M. R. van den Broeke, , C. H. Reijmer, , and E. van Meijgaard, 2006: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111, D11104, doi:10.1029/2005JD006495.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., , C. H. Reijmer, , and R. S. W. van de Wal, 2004: A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. J. Glaciol., 50, 565582.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., , W. J. van de Berg, , and E. van Meijgaard, 2006a: Snowfall in coastal West Antarctica much greater than previously assumed. Geophys. Res. Lett., 33, L02505, doi:10.1029/2005GL025239.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., , W. J. van de Berg, , E. van Meijgaard, , and C. Reijmer, 2006b: Identification of Antarctic ablation areas using a regional atmospheric climate model. J. Geophys. Res., 111, D18110, doi:10.1029/2006JD007127.

    • Search Google Scholar
    • Export Citation
  • van Ommen, T. D., , and V. Morgan, 2010: Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nat. Geosci., 3, 267272.

    • Search Google Scholar
    • Export Citation
  • van Ommen, T. D., , V. Morgan, , and M. A. Curran, 2004: Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica. Ann. Glaciol., 39, 359365.

    • Search Google Scholar
    • Export Citation
  • Vasiljevic, D., , E. Andersson, , L. Isaksen, , and A. Garcia-Mendez, 2006: Surface pressure bias correction in data assimilation. ECMWF Newsletter, No. 108, ECMWF, Reading, United Kingdom, 20–27. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/108.pdf.]

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., , J. L. Bamber, , M. Giovinetto, , J. Russell, , and A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12, 933946.

    • Search Google Scholar
    • Export Citation
  • Winther, J.-G., , M. N. Jespersen, , and G. E. Liston, 2001: Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol., 47, 325334.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yin, X., , A. Gruber, , and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 12071222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 343 343 78
PDF Downloads 231 231 62

An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses

View More View Less
  • 1 Polar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio
  • | 2 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This study evaluates the temporal variability of the Antarctic surface mass balance, approximated as precipitation minus evaporation (PE), and Southern Ocean precipitation in five global reanalyses during 1989–2009. The datasets consist of the NCEP/U.S. Department of Energy (DOE) Atmospheric Model Intercomparison Project 2 reanalysis (NCEP-2), the Japan Meteorological Agency (JMA) 25-year Reanalysis (JRA-25), ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Application (MERRA), and the Climate Forecast System Reanalysis (CFSR). Reanalyses are known to be prone to spurious trends and inhomogeneities caused by changes in the observing system, especially in the data-sparse high southern latitudes. The period of study has seen a dramatic increase in the amount of satellite observations used for data assimilation.

The large positive and statistically significant trends in mean Antarctic PE and mean Southern Ocean precipitation in NCEP-2, JRA-25, and MERRA are found to be largely spurious. The origin of these artifacts varies between reanalyses. Notably, a precipitation jump in MERRA in the late 1990s coincides with the start of the assimilation of radiances from the Advanced Microwave Sounding Unit (AMSU). ERA-Interim and CFSR do not exhibit any significant trends. However, the potential impact of the assimilation of rain-affected radiances in ERA-Interim and inhomogeneities in CFSR pressure fields over Antarctica cast some doubt on the reliability of these two datasets.

The authors conclude that ERA-Interim likely offers the most realistic depiction of precipitation changes in high southern latitudes during 1989–2009. The range of the trends in Antarctic PE among the reanalyses is equivalent to 1 mm of sea level over 21 years, which highlights the improvements still needed in reanalysis simulations to better assess the contribution of Antarctica to sea level rise. Finally, this work argues for continuing cautious use of reanalysis datasets for climate change assessment.

Byrd Polar Research Center Contribution Number 1406.

Corresponding author address: David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210. E-mail: bromwich.1@osu.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Abstract

This study evaluates the temporal variability of the Antarctic surface mass balance, approximated as precipitation minus evaporation (PE), and Southern Ocean precipitation in five global reanalyses during 1989–2009. The datasets consist of the NCEP/U.S. Department of Energy (DOE) Atmospheric Model Intercomparison Project 2 reanalysis (NCEP-2), the Japan Meteorological Agency (JMA) 25-year Reanalysis (JRA-25), ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Application (MERRA), and the Climate Forecast System Reanalysis (CFSR). Reanalyses are known to be prone to spurious trends and inhomogeneities caused by changes in the observing system, especially in the data-sparse high southern latitudes. The period of study has seen a dramatic increase in the amount of satellite observations used for data assimilation.

The large positive and statistically significant trends in mean Antarctic PE and mean Southern Ocean precipitation in NCEP-2, JRA-25, and MERRA are found to be largely spurious. The origin of these artifacts varies between reanalyses. Notably, a precipitation jump in MERRA in the late 1990s coincides with the start of the assimilation of radiances from the Advanced Microwave Sounding Unit (AMSU). ERA-Interim and CFSR do not exhibit any significant trends. However, the potential impact of the assimilation of rain-affected radiances in ERA-Interim and inhomogeneities in CFSR pressure fields over Antarctica cast some doubt on the reliability of these two datasets.

The authors conclude that ERA-Interim likely offers the most realistic depiction of precipitation changes in high southern latitudes during 1989–2009. The range of the trends in Antarctic PE among the reanalyses is equivalent to 1 mm of sea level over 21 years, which highlights the improvements still needed in reanalysis simulations to better assess the contribution of Antarctica to sea level rise. Finally, this work argues for continuing cautious use of reanalysis datasets for climate change assessment.

Byrd Polar Research Center Contribution Number 1406.

Corresponding author address: David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210. E-mail: bromwich.1@osu.edu

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

Save