• Bosilovich, M., , J. Chen, , F. R. Robertson, , and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., , C. D. Barnet, , M. D. Goldberg, , L. M. McMillin, , E. Maddy, , W. Wolf, , L. Zhou, , and Z. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., , J. Teixeira, , E. T. Olsen, , and E. F. Fishbein, 2004: Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophys. Res. Lett., 31, L17102, doi:10.1029/2004GL020174.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., , B. H. Lambrigtsen, , A. Eldering, , H. H. Aumann, , and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, doi:10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , B. Wang, , and L. Tao, 2006: Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett., 33, L03705, doi:10.1029/2005GL025074.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 19–61.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., , and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416433.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., , W. S. Olson, , C. L. Shie, , T. S. L’Ecuyer, , and W. K. Tao, 2009: Combining satellite microwave radiometer and radar observations to estimate atmospheric heating profiles. J. Climate, 22, 63566376.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: Commonalities and uncertainties. J. Climate, 23, 542558.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , H. H. Hendon, , and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , T. Li, , and B. Wang, 2004: Structures and mechanisms of the northward propagation boreal summer intraseasonal oscillation. J. Climate, 17, 10221039.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , R. W. Higgins, , D. E. Waliser, , and J.-K. E. Schemm, 2004: Climatology of tropical intraseasonal convective anomalies: 1979–2002. J. Climate, 17, 523539.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., , and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095.

  • L’Ecuyer, T. S., , and G. L. Stephens, 2003: The tropical atmospheric energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J. Climate, 20, 45484571.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and G. McGarragh, 2010: A 10-year climatology of tropical radiative heating and its vertical structure from TRMM observations. J. Climate, 23, 519541.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1986: Aspects of 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1990: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci., 47, 14431462.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and P. J. Webster, 2001: Interannual variations of the intraseasonal oscillation in the South Asian summer monsoon region. J. Climate, 14, 29102922.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 33673383.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., , T. Nakazawa, , and J. He, 1984: On the 40-50 day oscillation during 1979 Northern Hemisphere summer. Part I: Phase propagation. J. Meteor. Soc. Japan, 62, 440468.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2008-104606, Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 27, 117 pp.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , W.-K. Tao, , and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , W.-K. Tao, , and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , Y. N. Takayabu, , and W.-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47, 620640.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , P. E. Ciesielski, , and M. H. Zhang, 2008: Tropical cloud heating profiles: Analysis from KWAJEX. Mon. Wea. Rev., 136, 42894300.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., , C. Barnet, , J. Blisdell, , L. Iredell, , F. Keita, , L. Kouvaris, , G. Molnar, , and M. Chahine, 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sound Unit as a function of fractional cloud cover. J. Geophys. Res., 111, D09S17, doi:10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957982.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , B. H. Lambrigtsen, , Y. L. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in Atmospheric Infrared Sounder retrievals: An update and a comparison to ECMWF Interim Re-Analysis. Mon. Wea. Rev., 138, 45764582.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423446, doi:10.1007/s00382-003-0337-1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975-1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7186.

  • Wong, S., , E. J. Fetzer, , B. H. Kahn, , B. Tian, , B. H. Lambrigtsen, , and H. Ye, 2011: Closing the global water budget with AIRS water vapor, MERRA winds and evaporation, and TRMM precipitation. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. O. Magaña, , T. N. Palmer, , J. Shukla, , R. A. Tomas, , M. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability and the prospects for prediction. J. Geophys. Res., 103 (C7), 14 45114 510.

    • Search Google Scholar
    • Export Citation
  • Xavier, P. K., , C. Marzin, , and B. N. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship. Quart. J. Roy. Meteor. Soc., 133, 749764.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, B., , X. Fu, , and B. Wang, 2008: Atmosphere-ocean conditions jointly guide convection of the boreal summer intraseasonal oscillation: Satellite observations. J. Geophys. Res., 113, D11105, doi:10.1029/2007JD009276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 335 68
PDF Downloads 106 106 27

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Department of Geography and Urban Analysis, California State University, Los Angeles, California
© Get Permissions
Restricted access

Abstract

The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and temperature from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit (AIRS) and wind fields from the National Aeronautics and Space Administration (NASA)’s Goddard Space Flight Center (GSFC)’s Modern Era Retrospective-Analysis for Research and Applications (MERRA). The intraseasonal oscillation (ISO) of the Indian summer monsoon is used as a test bed to evaluate the apparent water vapor sink and heat source. The ISO-related northward movement of the column-integrated apparent water vapor sink matches that of precipitation observed by the Tropical Rainfall Measuring Mission (TRMM) minus the MERRA surface evaporation, although the amplitude of the variation is underestimated by 50%. The diagnosed water vapor and heat budgets associated with convective events during various phases of the ISO agree with the moisture–convection feedback mechanism. The apparent heat source moves northward coherently with the apparent water vapor sink associated with the deep convective activity, which is consistent with the northward migration of the precipitation anomaly. The horizontal advection of water vapor and dynamical warming are strong north of the convective area, causing the northward movement of the convection by the destabilization of the atmosphere. The spatial distribution of the apparent heat source anomalies associated with different phases of the ISO is consistent with that of the diabatic heating anomalies from the trained heating (TRAIN Q1) dataset. Further diagnostics of the TRAIN Q1 heating anomalies indicate that the ISO in the apparent heat source is dominated by a variation in latent heating associated with the precipitation.

Corresponding author address: Sun Wong, JPL, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: sun.wong@jpl.nasa.gov

Abstract

The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and temperature from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit (AIRS) and wind fields from the National Aeronautics and Space Administration (NASA)’s Goddard Space Flight Center (GSFC)’s Modern Era Retrospective-Analysis for Research and Applications (MERRA). The intraseasonal oscillation (ISO) of the Indian summer monsoon is used as a test bed to evaluate the apparent water vapor sink and heat source. The ISO-related northward movement of the column-integrated apparent water vapor sink matches that of precipitation observed by the Tropical Rainfall Measuring Mission (TRMM) minus the MERRA surface evaporation, although the amplitude of the variation is underestimated by 50%. The diagnosed water vapor and heat budgets associated with convective events during various phases of the ISO agree with the moisture–convection feedback mechanism. The apparent heat source moves northward coherently with the apparent water vapor sink associated with the deep convective activity, which is consistent with the northward migration of the precipitation anomaly. The horizontal advection of water vapor and dynamical warming are strong north of the convective area, causing the northward movement of the convection by the destabilization of the atmosphere. The spatial distribution of the apparent heat source anomalies associated with different phases of the ISO is consistent with that of the diabatic heating anomalies from the trained heating (TRAIN Q1) dataset. Further diagnostics of the TRAIN Q1 heating anomalies indicate that the ISO in the apparent heat source is dominated by a variation in latent heating associated with the precipitation.

Corresponding author address: Sun Wong, JPL, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: sun.wong@jpl.nasa.gov
Save