• Bellucci, A., , S. Gualdi, , E. Scoccimarro, , and A. Navarra, 2008: NAO–ocean circulation interactions in a coupled general circulation model. Climate Dyn., 31, 759777, doi:10.1007/s00382-008-0408-4.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , I. Ginis, , and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., , T. R. Knutson, , R. E. Tuleya, , J. J. Sirutis, , G. A. Vecchi, , S. T. Garner, , I. M. Held, 2010: Modeled impact of anthropogenic warming of the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , M. Botzet, , and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175196.

  • Bengtsson, L., , M. Botzet, , and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 5773.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., 1983: Ocean temperature change induced by tropical cyclones. Ph.D. dissertation, Pennsylvania State University, 278 pp.

  • Boccaletti, G., , R. Ferrari, , A. Adcroft, , D. Ferreira, , and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , J. R. Jeffey, , R. Scott, , and K. A. Emanuel, 2004: Transient diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 34, 334341.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. G. Barnston, , and S. E. Zebiak, 2004: Properties of tropical cyclones in atmospheric general circulation models. IRI Tech. Rep. 04-02, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , Y. Duan, , and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W., , and F. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128135.

  • Chauvin, F., , J.-F. Royer, , and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377399.

    • Search Google Scholar
    • Export Citation
  • Claud, C., , B. Alhammoud, , B. M. Funatsu, , and J.-P. Chaboureau, 2010: Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazard. Earth Syst. Sci., 10, 21992213.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , P. Kossin, , and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295.

  • Emanuel, K. A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106 (D14), 14 77114 781.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Emanuel, K. A., , R. Sundararajan, , and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , C. M. Brierley, , and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., , and M. A. Morales-Maqueda, 1999: Modeling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251268.

    • Search Google Scholar
    • Export Citation
  • Fogli, P. G., and Coauthors, 2009: INGV-CMCC Carbon (ICC): A carbon cycle earth system model. CMCC Tech. Rep. 61, 30 pp.

  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology Over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348.

  • Hu, A., , and G. A. Meehl, 2009: Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys. Res. Lett., 36, L03702, doi:10.1029/2008GL036680.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., , and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36, L06604, doi:10.1029/2008GL036796.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., , R. Ferrari, , and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, doi:10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Kleinschmidt, E., Jr., 1951: Grundlagen einer theorie der tropischen zyklonen. Arch. Meteor. Geophys. Bioklimatol., 4A, 5372.

  • Knutson, T. R., , R. E. Tuleya, , W. Shen, , and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14, 24582468.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , S. T. Garner, , G. A. Vecchi, , and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010a: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/NGEO779.

  • Knutson, T. R., , C. Landsea, , and K. Emanuel, 2010b: Tropical cyclones and climate change: A review. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. Kepert, Eds., World Scientific, 243–286.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , P. Alpert, , and M. Dayan, 2007: An evaluation of the role of Hurricane Olga (2001) in an extreme rainy event in Israel using dynamic tropopause maps. Meteor. Atmos. Phys., 98, 3553, doi:10.1007/s00703-006-0230-7.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197202.

  • Lin, S. J., , and R. B. Rood, 1996: Multidimensional flux form semi-Lagrangian transport. Mon. Wea. Rev., 124, 20462068.

  • Liu, L. L., , W. Wang, , and R. X. Huang, 2008: The mechanical energy input to the ocean induced by tropical cyclones. J. Phys. Oceanogr., 38, 12531266.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine, version 3.0. IPSL Note du Pôle de Modélisation 27, 209 pp.

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. IPSL Note du Pôle de Modélisation 11, 91 pp.

    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., , D. G. Bleaken, , D. R. Cresswell, , V. D. Pope, , and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Climate Dyn., 25, 1936, doi:10.1007/s00382-004-0491-0.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , H. Teng, , and G. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Climate Dyn., 26, 549566.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376.

  • National Weather Service, 2002: Tropical cyclone definitions. NWSM 10-604, 10 pp. [Available online at http://www.weather.gov/directives/010/archive/pd01006004a.pdf.]

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department Tech. Memo. 206, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Oddo, P., , M. Adani, , N. Pinardi, , C. Fratianni, , and D. Pettenuzzo, 2009: Nested Atlantic-Mediterranean sea general circulation model for operational forecasting. Ocean Sci., 5, 461473.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and N. A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Pasquero, C., , and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming. J. Climate, 21, 149162.

  • Peterson, T. C., , and M. O. Baringer, Eds., 2009: State of the climate in 2008. Bull. Amer. Meteor. Soc., 90 (8), S1S196.

  • Pezza, A. B., , and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1950: A model of hurricane formation. J. Appl. Phys., 21, 917925.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. MPI Rep. 349, 127 pp.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., , and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105, 23 92723 942.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., , F. Chauvin, , B. Timbal, , P. Araspin, , and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climate Dyn., 38, 307343.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., , and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., 2010: Climate change: Tropical cyclones in the mix. Nature, 463, 10321033.

  • Sriver, R. L., , and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580, doi:10.1038/nature05785.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., , and M. Huber, 2010: Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett., 37, L08704, doi:10.1029/2010GL042836.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , A. Noda, , and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249272.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., , and A. P. Khain, 1979: Interaction of the ocean and the atmosphere in the area of moving tropical cyclone. Dokl. Akad. Nauk SSSR, 249, 467470.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 17531754.

  • Trenberth, K., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Valcke, S., Ed., 2006: OASIS3 user guide (prism_2-5). PRISM–Support Initiative Rep. 3, 64 pp.

  • Vecchi, G. A., , and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., , and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vichi, M., , E. Manzini, , P. G. Fogli, , A. Alessandri, , L. Patara, , E. Scoccimarro, , S. Masina, , and A. Navarra, 2011: Global and regional ocean carbon uptake and climate change: Sensitivity to a substantial mitigation scenario. Climate Dyn., doi:10.1007/s00382-011-1079-0, in press.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 958977.

  • Walsh, K. J. E., , and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 30293036.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., , M. Fiorino, , C. W. Landsea, , and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , G. J. Holland, , J. A. Curry, , and H.-R. Chang, 2005: Changes in tropical cyclones number, duration and intensity in a warming environment. Science, 309, 18441846.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , M. Sigu, , and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405428.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 681 681 224
PDF Downloads 244 244 54

Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model

View More View Less
  • 1 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
  • | 2 Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
© Get Permissions
Restricted access

Abstract

In this paper the interplay between tropical cyclones (TCs) and the Northern Hemispheric ocean heat transport (OHT) is investigated. In particular, results from a numerical simulation of the twentieth-century and twenty-first-century climates, following the Intergovernmental Panel on Climate Change (IPCC) twentieth-century run (20C3M) and A1B scenario protocols, respectively, have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere–ocean–sea ice coupled general circulation model (CGCM) with relatively high-resolution (T159) in the atmosphere. The CGCM skill in reproducing a realistic TC climatology has been assessed by comparing the model results from the simulation of the twentieth century with available observations. The model simulates tropical cyclone–like vortices with many features similar to the observed TCs. Specifically, the simulated TCs exhibit realistic structure, geographical distribution, and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large-scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model. TC activity is shown to significantly increase the poleward OHT out of the tropics and decrease the poleward OHT from the deep tropics on short time scales. This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface, where the winds associated with the TCs significantly weaken (strengthen) the trade winds in the 5°–18°N (18°–30°N) latitude belt. However, the induced perturbation does not impact the yearly averaged OHT. The frequency and intensity of the TCs appear to be substantially stationary through the entire 1950–2069 simulated period, as does the effect of the TCs on the OHT.

Current affiliation: Max Planck Institute for Meteorology, Hamburg, Germany.

Corresponding author address: Enrico Scoccimarro, CMCC, Via Aldo Moro 44, 40127 Bologna, Italy. E-mail: scoccimarro@bo.ingv.it

Abstract

In this paper the interplay between tropical cyclones (TCs) and the Northern Hemispheric ocean heat transport (OHT) is investigated. In particular, results from a numerical simulation of the twentieth-century and twenty-first-century climates, following the Intergovernmental Panel on Climate Change (IPCC) twentieth-century run (20C3M) and A1B scenario protocols, respectively, have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere–ocean–sea ice coupled general circulation model (CGCM) with relatively high-resolution (T159) in the atmosphere. The CGCM skill in reproducing a realistic TC climatology has been assessed by comparing the model results from the simulation of the twentieth century with available observations. The model simulates tropical cyclone–like vortices with many features similar to the observed TCs. Specifically, the simulated TCs exhibit realistic structure, geographical distribution, and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large-scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model. TC activity is shown to significantly increase the poleward OHT out of the tropics and decrease the poleward OHT from the deep tropics on short time scales. This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface, where the winds associated with the TCs significantly weaken (strengthen) the trade winds in the 5°–18°N (18°–30°N) latitude belt. However, the induced perturbation does not impact the yearly averaged OHT. The frequency and intensity of the TCs appear to be substantially stationary through the entire 1950–2069 simulated period, as does the effect of the TCs on the OHT.

Current affiliation: Max Planck Institute for Meteorology, Hamburg, Germany.

Corresponding author address: Enrico Scoccimarro, CMCC, Via Aldo Moro 44, 40127 Bologna, Italy. E-mail: scoccimarro@bo.ingv.it
Save