• An, S.-I., 2005: Relative roles of the equatorial upper ocean zonal current and thermocline in determining the timescale of the tropical climate system. Theor. Appl. Climatol., 81, 121132.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , and F.-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27, 25732576.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , J.-S. Kug, , Y.-G. Ham, , and I.-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21, 321.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712.

    • Search Google Scholar
    • Export Citation
  • Belmadani, A., , B. Dewitte, , and S.-I. An, 2010: ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J. Climate, 23, 31813204.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Blumenthal, B., , and M. A. Cane, 1989: Accounting for parameter uncertainties in model verification: An illustration with tropical sea surface temperature. J. Phys. Oceanogr., 19, 815830.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., , and C. Menkes, 1995: Propagation and reflection of long equatorial waves in the Pacific Ocean during the 1992–1993 El Niño. J. Geophys. Res., 100 (C12), 25 04125 059.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , F.-F. Jin, , and G. J. Van Oldenborgh, 2005: The simplest ENSO recharge oscillator. Geophys. Res. Lett., 32, L13706, doi:10.1029/2005GL022951.

    • Search Google Scholar
    • Export Citation
  • Busalacchi, A. J., , and M. A. Cane, 1988: The effect of varying stratification on low-frequency equatorial motions. J. Phys. Oceanogr., 18, 801812.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , and E. S. Sarachik, 1976: Forced baroclinic ocean motions. 1. Linear equatorial unbounded case. J. Mar. Res., 34, 629665.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Nino & the Southern Oscillation. Academic Press, 324 pp.

  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The “tilt” and “warm water volume” modes. J. Phys. Oceanogr., 40, 121137.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397.

  • Dewitte, B., 2000: Sensitivity of an intermediate ocean–atmosphere coupled model of the tropical Pacific to its oceanic vertical structure. J. Climate, 13, 23632388.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , and C. Perigaud, 1996: El Niño–La Niña events simulated with Cane and Zebiak’s model and observed with satellite or in situ data. Part II: Model forced with observations. J. Climate, 9, 11881207.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , G. Reverdin, , and C. Maes, 1999: Vertical structure of an OCGM simulation of the equatorial Pacific Ocean in 1985–94. J. Phys. Oceanogr., 29, 15421570.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , S. Illig, , L. Parent, , Y. DuPenhoat, , L. Gourdeau, , and J. Verron, 2003: Tropical Pacific baroclinic mode contribution and associated long waves for the 1994–1999 period from an assimilation experiment with altimetric data. J. Geophys. Res., 108, 3121, doi:10.1029/2002JC001362.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , S.-W. Yeh, , B.-K. Moon, , C. Cibot, , and L. Terray, 2007: Rectification of ENSO variability in interdecadal changes in the equatorial background mean state in a CGCM simulation. J. Climate, 20, 20022021.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., , S. Thual, , S.-W. Yeh, , S.-I. An, , B.-K. Moon, , and B. S. Giese, 2009: Low-frequency variability of temperature in the vicinity of the equatorial Pacific thermocline in SODA: Role of equatorial wave dynamics and ENSO asymmetry. J. Climate, 22, 57835795.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 30863101.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348.

  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829.

  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , S.-I. An, , A. Timmermann, , and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , and S.-I. An, 1998: Kelvin and Rossby wave contributions to the SST oscillation of ENSO. J. Climate, 11, 24612469.

  • Lee, T., , and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , J. D. Neelin, , and J.-Y. Yu, 2003: Testing simple models of ENSO. J. Atmos. Sci., 60, 305318.

  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., , and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559.

    • Search Google Scholar
    • Export Citation
  • Moon, B.-K., , S.-W. Yeh, , B. Dewitte, , J.-G. Jhun, , I.-S. Kang, , and B. P. Kirtman, 2004: Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys. Res. Lett., 31, L03203, doi:10.1029/2003GL018829.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , M. Latif, , and F.-F. Jin, 1994: Dynamics of coupled ocean-atmosphere models: The tropical problem. Annu. Rev. Fluid Mech., 26, 617659.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F.-F. Jin, , Y. Wakata, , T. Yamagata, , and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 (C7), 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., , P. Friederichs, , and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774.

    • Search Google Scholar
    • Export Citation
  • Savitzky, A., , and M. J. E. Golay, 1964: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 16271639.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549566.

  • Timmerman, A., , J. Oberhuber, , A. Bacher, , M. Esch, , M. Latif, , and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694696.

    • Search Google Scholar
    • Export Citation
  • Timmerman, A., , F.-F. Jin, , and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152165.

  • Trenberth, K. E., , and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701.

  • Van Oldenborgh, G. J., , S. Y. Philip, , and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195.

  • Wang, B., , and S.-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 37093712.

  • Yeh, S.-W., , B. Dewitte, , J.-G. Jhun, , and I.-S. Kang, 2001: The characteristic oscillation induced by coupled processes between oceanic vertical modes and atmospheric modes in the tropical Pacific. Geophys. Res. Lett., 28, 28472850.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , J.-S. Kug, , B. Dewitte, , M.-H. Kwon, , B. P. Kirtman, , and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , B. Dewitte, , B. Young Yim, , and Y. Noh, 2010: Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Climate Dyn., 35, 355369, doi:10.1007/s00382-010-0849-4.

    • Search Google Scholar
    • Export Citation
  • Zebiak, E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 0
PDF Downloads 12 12 0

Sensitivity of ENSO to Stratification in a Recharge–Discharge Conceptual Model

View More View Less
  • 1 Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, Toulouse, France, and Instituto Geofisico del Peru, Lima, Peru
  • | 2 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 3 Laboratoire d’Etude en Géophysique et Océanographie Spatiale, Toulouse, France
© Get Permissions
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is driven by large-scale ocean–atmosphere interactions in the equatorial Pacific and is sensitive to change in the mean state. Whereas conceptual models of ENSO usually consider the depth of the thermocline to be influential on the stability of ENSO, the observed changes in the depth of the 20°C isotherm are rather weak, on the order of approximately 5 m over the last decades. Conversely, change in stratification that affects both the intensity and sharpness of the thermocline can be pronounced. Here, the two-strip conceptual model of An and Jin is extended to include three parameters (i.e., the contribution of the first three baroclinic modes) that account for the main characteristics of the mean thermocline vertical structure.

A stability analysis of the model is carried out that indicates that the model sustains a lower ENSO mode when the high-order baroclinic modes (M2 and M3) are considered. The sensitivity of the model solution to the coupling efficiency further indicates that, in the weak coupling regime, the model allows for several ocean basin modes at low frequency. The latter can eventually merge into a low-frequency and unstable mode representative of ENSO as the coupling efficiency increases. Also, higher baroclinic modes project more energy onto the ocean dynamics for the same input of wind forcing. Therefore, in this study’s model, a shallower, yet more intense mean thermocline may still sustain a strong (i.e., unstable) and low-frequency ENSO mode. Sensitivity tests to the strength of the two dominant feedbacks (thermocline vs zonal advection) indicate that the presence of high-order baroclinic modes favors the bifurcation from a low-frequency regime to a higher-frequency regime when the zonal advective feedback is enhanced.

It is suggested that the proposed formalism can be used to interpret and measure the sensitivity of coupled general circulation models to climate change.

Corresponding author address: Sulian Thual, Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, 14 Av. Edouard Belin, 31400 Toulouse, France. E-mail: sulian.thual@gmail.com

Abstract

El Niño–Southern Oscillation (ENSO) is driven by large-scale ocean–atmosphere interactions in the equatorial Pacific and is sensitive to change in the mean state. Whereas conceptual models of ENSO usually consider the depth of the thermocline to be influential on the stability of ENSO, the observed changes in the depth of the 20°C isotherm are rather weak, on the order of approximately 5 m over the last decades. Conversely, change in stratification that affects both the intensity and sharpness of the thermocline can be pronounced. Here, the two-strip conceptual model of An and Jin is extended to include three parameters (i.e., the contribution of the first three baroclinic modes) that account for the main characteristics of the mean thermocline vertical structure.

A stability analysis of the model is carried out that indicates that the model sustains a lower ENSO mode when the high-order baroclinic modes (M2 and M3) are considered. The sensitivity of the model solution to the coupling efficiency further indicates that, in the weak coupling regime, the model allows for several ocean basin modes at low frequency. The latter can eventually merge into a low-frequency and unstable mode representative of ENSO as the coupling efficiency increases. Also, higher baroclinic modes project more energy onto the ocean dynamics for the same input of wind forcing. Therefore, in this study’s model, a shallower, yet more intense mean thermocline may still sustain a strong (i.e., unstable) and low-frequency ENSO mode. Sensitivity tests to the strength of the two dominant feedbacks (thermocline vs zonal advection) indicate that the presence of high-order baroclinic modes favors the bifurcation from a low-frequency regime to a higher-frequency regime when the zonal advective feedback is enhanced.

It is suggested that the proposed formalism can be used to interpret and measure the sensitivity of coupled general circulation models to climate change.

Corresponding author address: Sulian Thual, Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, 14 Av. Edouard Belin, 31400 Toulouse, France. E-mail: sulian.thual@gmail.com
Save