The Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach

Kevin A. Hill Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Kevin A. Hill in
Current site
Google Scholar
PubMed
Close
and
Gary M. Lackmann Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Gary M. Lackmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A comprehensive analysis of tropical cyclone (TC) intensity change in a warming climate is undertaken with high-resolution (6- and 2-km grid spacing) idealized simulations using the Weather Research and Forecasting (WRF) model. With the goal of isolating the influence of thermodynamic aspects of climate change on maximum hurricane intensity, an idealized TC is placed within a quiescent, horizontally uniform tropical environment computed from averaged reanalysis data for the tropical Atlantic Ocean. The analyzed tropical environment is used for control simulations. Changes between the periods 1990–99 and 2090–99 are computed using output from 13 GCMs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), for the A1B, A2, and B1 emissions scenarios. These changes are then added to the reanalysis-derived initial and boundary conditions used in the control simulations. Some processes known to impact TC intensity, such as environmental vertical wind shear and sea surface wake cooling, are not considered in this study. Future TC intensity increased for 75 of 78 future simulations using 6-km grid length, with a 9% (~8 hPa) average increase in central surface-pressure deficit. For the 2-km simulations, the average increase was 14% (~14 hPa). The depth of the TC secondary circulation increases in future simulations, consistent with an increase in the height of the freezing level and tropopause. Inner-core precipitation increases of 10%–30% are found for future simulations, with large sensitivity to the emission scenario. The increase in precipitation is consistent with a stronger potential vorticity tower, a warmer eye, and lower central pressure. Enhanced upper-tropospheric warming in the GCM environment is shown to be an important mitigating influence on TC intensity change but is also shown to exhibit large uncertainty in GCM projections.

Corresponding author address: Kevin A. Hill, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 1125 Jordan Hall, Box 8208, Raleigh, NC 27695-8208. E-mail: kevin1182@yahoo.com

Abstract

A comprehensive analysis of tropical cyclone (TC) intensity change in a warming climate is undertaken with high-resolution (6- and 2-km grid spacing) idealized simulations using the Weather Research and Forecasting (WRF) model. With the goal of isolating the influence of thermodynamic aspects of climate change on maximum hurricane intensity, an idealized TC is placed within a quiescent, horizontally uniform tropical environment computed from averaged reanalysis data for the tropical Atlantic Ocean. The analyzed tropical environment is used for control simulations. Changes between the periods 1990–99 and 2090–99 are computed using output from 13 GCMs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), for the A1B, A2, and B1 emissions scenarios. These changes are then added to the reanalysis-derived initial and boundary conditions used in the control simulations. Some processes known to impact TC intensity, such as environmental vertical wind shear and sea surface wake cooling, are not considered in this study. Future TC intensity increased for 75 of 78 future simulations using 6-km grid length, with a 9% (~8 hPa) average increase in central surface-pressure deficit. For the 2-km simulations, the average increase was 14% (~14 hPa). The depth of the TC secondary circulation increases in future simulations, consistent with an increase in the height of the freezing level and tropopause. Inner-core precipitation increases of 10%–30% are found for future simulations, with large sensitivity to the emission scenario. The increase in precipitation is consistent with a stronger potential vorticity tower, a warmer eye, and lower central pressure. Enhanced upper-tropospheric warming in the GCM environment is shown to be an important mitigating influence on TC intensity change but is also shown to exhibit large uncertainty in GCM projections.

Corresponding author address: Kevin A. Hill, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 1125 Jordan Hall, Box 8208, Raleigh, NC 27695-8208. E-mail: kevin1182@yahoo.com
Save
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulation of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and P. M. de F. Forster, 2006: Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys., 6, 53695380.

    • Search Google Scholar
    • Export Citation
  • Dall’Amico, M., L. J. Gray, K. H. Rosenlof, A. A. Scaife, K. P. Shine, and P. A. Stott, 2010a: Stratospheric temperature trends: Impact of ozone variability and the QBO. Climate Dyn., 34, 381398.

    • Search Google Scholar
    • Export Citation
  • Dall’Amico, M., P. A. Stott, A. A. Scaife, L. J. Gray, K. H. Rosenlof, and A. Y. Karpechko, 2010b: Stratospheric temperature trends: Impact of ozone variability and the QBO. Climate Dyn., 34, 399417.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 19902005.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485.

  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173741.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., G. Bodeker, R. Schofield, S. Solomon, and D. Thompson, 2007: Effects of ozone cooling in the tropical lower stratosphere and upper troposphere. Geophys. Res. Lett., 34, L23813, doi:10.1029/2007GL031994.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hill, K. A., and G. M. Lackmann, 2009a: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009b: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315.

  • Hill, K. A., G. M. Lackmann, and A. Aiyyer, 2008: Model simulated changes in TC intensity due to global warming. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 7B.2. [Available online at http://ams.confex.com/ams/pdfpapers/138181.pdf.].

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541.

  • Hong, Y.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houze, R. A., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, doi:10.1126/science.1135650.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., P. G. Black, E. J. Zipser, F. D. Marks, and E. W. Uhlhorn, 2006: Validation of rain-rate estimation in hurricanes from the stepped frequency microwave radiometer: Algorithm correction and error analysis. J. Atmos. Sci., 63, 252267.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Knutson, T. R., and R. E. Tuleya, 1999: Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Climate Dyn., 15, 503519.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, W. Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14, 24582468.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and R. M. Yablonsky, 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61, 16741692.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds., 2000: Emission scenarios. Special Report on Emissions Scenarios, Cambridge University Press, 239–292.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer-core boundary layer. Mon. Wea. Rev., 137, 36513674.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 72122.

  • Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at larger Rossby number. Quart. J. Roy. Meteor. Soc., 118, 9871015.

    • Search Google Scholar
    • Export Citation
  • Rennick, M. A., 1977: The parameterization of tropospheric lapse rates in terms of surface temperature. J. Atmos. Sci., 34, 854862.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 18111834.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 15511556.

    • Search Google Scholar
    • Export Citation
  • Shen, W., R. E. Tuleya, and I. Ginis, 2000: A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13, 109121.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2007: A description of the advanced research WRF Version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009a: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2009b: The impact of stratospheric ozone recovery on tropopause height trends. J. Climate, 22, 429445.

  • Stoelinga, M. T., 1996: A potential vorticity–based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. J. Atmos. Sci., 36, 415423.

  • Talgo, K. D., 2009: Tropical Atlantic vertical wind shear variability in a future climate. M.S. thesis, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 97 pp.

  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1088 372 17
PDF Downloads 714 198 13