Arctic Inversion Strength in Climate Models

Brian Medeiros National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Brian Medeiros in
Current site
Google Scholar
PubMed
Close
,
Clara Deser National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
,
Robert A. Tomas National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert A. Tomas in
Current site
Google Scholar
PubMed
Close
, and
Jennifer E. Kay National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jennifer E. Kay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent work indicates that climate models have a positive bias in the strength of the wintertime low-level temperature inversion over the high-latitude Northern Hemisphere. It has been argued this bias leads to underestimates of the Arctic’s surface temperature response to anthropogenic forcing. Here the bias in inversion strength is revisited. The spatial distribution of low-level stability is found to be bimodal in climate models and observational reanalysis products, with low-level inversions represented by a stable primary mode over the interior Arctic Ocean and adjacent continents, and a secondary unstable mode over the Atlantic Ocean. Averaging over these differing conditions is detrimental to understanding the origins of the inversion strength bias. While nearly all of the 21 models examined overestimate the area-average inversion strength, conditionally sampling the two modes shows about half the models are biased because of the relative partitioning of the modes and half because of biases within the stable mode.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Brian Medeiros, NCAR/CGD, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: brianpm@ucar.edu

Abstract

Recent work indicates that climate models have a positive bias in the strength of the wintertime low-level temperature inversion over the high-latitude Northern Hemisphere. It has been argued this bias leads to underestimates of the Arctic’s surface temperature response to anthropogenic forcing. Here the bias in inversion strength is revisited. The spatial distribution of low-level stability is found to be bimodal in climate models and observational reanalysis products, with low-level inversions represented by a stable primary mode over the interior Arctic Ocean and adjacent continents, and a secondary unstable mode over the Atlantic Ocean. Averaging over these differing conditions is detrimental to understanding the origins of the inversion strength bias. While nearly all of the 21 models examined overestimate the area-average inversion strength, conditionally sampling the two modes shows about half the models are biased because of the relative partitioning of the modes and half because of biases within the stable mode.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Brian Medeiros, NCAR/CGD, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: brianpm@ucar.edu
Save
  • Alexander, M. A., R. Tomas, C. Deser, and D. M. Lawrence, 2010: The atmospheric response to projected terrestrial snow changes in the late twenty-first century. J. Climate, 23, 64306437.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate, 22, 46824695.

  • Busch, N., U. Ebel, H. Kraus, and E. Schaller, 1982: The structure of the subpolar inversion-capped ABL. Meteor. Atmos. Phys., 31, 118, doi:10.1007/BF02257738.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., U. Willén, K.-G. Karlsson, and C. G. Jones, 2010: Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmos. Chem. Phys. Discuss., 10, 28352858, doi:10.5194/acpd-10-2835-2010.

    • Search Google Scholar
    • Export Citation
  • Kay, J., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396.

  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T., J. Boé, A. Hall, and E. Fetzer, 2010: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, doi:10.1007/s00382-010-0756-8.

    • Search Google Scholar
    • Export Citation
  • Screen, J., and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., and R. Barry, 2005: The Arctic Climate System. Cambridge University Press, 402 pp.

  • Serreze, M., R. C. Schnell, and J. D. Kahl, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5, 615629.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. The Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and R. G. Graversen, 2009: The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 135, 431443, doi:10.1002/qj.380.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 17301747.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, J.-C. Golaz, C. Deser, and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 801 431 25
PDF Downloads 363 131 15