Principal Component Analysis of Observed and Modeled Diurnal Rainfall in the Maritime Continent

Chee-Kiat Teo Temasek Laboratories, Nanyang Technological University, Singapore

Search for other papers by Chee-Kiat Teo in
Current site
Google Scholar
PubMed
Close
,
Tieh-Yong Koh School of Physical and Mathematical Sciences, and Earth Observatory of Singapore, and Temasek Laboratories, Nanyang Technological University, Singapore

Search for other papers by Tieh-Yong Koh in
Current site
Google Scholar
PubMed
Close
,
Jeff Chun-Fung Lo Temasek Laboratories, Nanyang Technological University, Singapore

Search for other papers by Jeff Chun-Fung Lo in
Current site
Google Scholar
PubMed
Close
, and
Bhuwan Chandra Bhatt Temasek Laboratories, Nanyang Technological University, Singapore

Search for other papers by Bhuwan Chandra Bhatt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Principal component analysis (PCA) is able to diagnose the diurnal rain cycle in the Maritime Continent into two modes that explain most of the diurnal variability in the region. The first mode results from the differential variation in potential instability forced by surface heat flux, insolation, and longwave radiative cooling on land and sea. The second mode is associated with intrinsic mesoscale dynamics of convective systems and its interactions with gravity waves, density currents, and local circulations in coastal regions or mountainous terrain. The spatial phase relation between the two modes determines whether a diurnal signal is propagating or stationary. Thus, validating model simulations of diurnal rainfall using PCA provides insights on the representation of dynamics and physics. In this paper, the main modes of diurnal rain variability in the Maritime Continent from satellite observations are studied and are compared with those from Weather Research and Forecasting (WRF) model simulations. Hovmoeller analyses of the reconstructed rainfall from the first two PCA modes clarify the impact of coastlines and mountains as sources of propagating signals. Wave cavities are identified in the Straits of Malacca, Malay Peninsula, and north Sumatra where stationary signals are produced. WRF reproduces the first two modes but each with a phase lead of about 1–2 h or longer, depending on the satellite rainfall product used for comparison. The basic diurnal forcing in the model seems to be too strong and the model responds too strongly to small islands and small-scale topography. The phase speed of propagating signals over open sea is correctly modeled but that over land is too slow.

Corresponding author address: Chee-Kiat Teo, Temasek Laboratories, Nanyang Technological University, 9th Storey, BorderX Block, Research Techno Plaza, 50 Nanyang Drive, 637553 Singapore. E-mail: ckteo@ntu.edu.sg

Abstract

Principal component analysis (PCA) is able to diagnose the diurnal rain cycle in the Maritime Continent into two modes that explain most of the diurnal variability in the region. The first mode results from the differential variation in potential instability forced by surface heat flux, insolation, and longwave radiative cooling on land and sea. The second mode is associated with intrinsic mesoscale dynamics of convective systems and its interactions with gravity waves, density currents, and local circulations in coastal regions or mountainous terrain. The spatial phase relation between the two modes determines whether a diurnal signal is propagating or stationary. Thus, validating model simulations of diurnal rainfall using PCA provides insights on the representation of dynamics and physics. In this paper, the main modes of diurnal rain variability in the Maritime Continent from satellite observations are studied and are compared with those from Weather Research and Forecasting (WRF) model simulations. Hovmoeller analyses of the reconstructed rainfall from the first two PCA modes clarify the impact of coastlines and mountains as sources of propagating signals. Wave cavities are identified in the Straits of Malacca, Malay Peninsula, and north Sumatra where stationary signals are produced. WRF reproduces the first two modes but each with a phase lead of about 1–2 h or longer, depending on the satellite rainfall product used for comparison. The basic diurnal forcing in the model seems to be too strong and the model responds too strongly to small islands and small-scale topography. The phase speed of propagating signals over open sea is correctly modeled but that over land is too slow.

Corresponding author address: Chee-Kiat Teo, Temasek Laboratories, Nanyang Technological University, 9th Storey, BorderX Block, Research Techno Plaza, 50 Nanyang Drive, 637553 Singapore. E-mail: ckteo@ntu.edu.sg
Save
  • Bechtold, P., J. P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J. L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., F. Guichard, J. L. Redelsperger, and J. P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T.-C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and nonconvection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679.

    • Search Google Scholar
    • Export Citation
  • Fujita, M., F. Kimura, and M. Yoshizaki, 2010: Morning precipitation peak over the Strait of Malacca under a calm condition. Mon. Wea. Rev., 138, 14741486.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799809.

    • Search Google Scholar
    • Export Citation
  • Hara, M., T. Yoshikane, H. G. Takahashi, F. Kimura, A. Noda, and T. Tokioka, 2009: Assessment of the diurnal cycle of precipitation over the Maritime Continent simulated by a 20 km mesh GCM using TRMM PR data. J. Meteor. Soc. Japan, 87, 413424.

    • Search Google Scholar
    • Export Citation
  • Hatcher, L., A. J. Hogg, and A. W. Woods, 2000: The effects of drag on turbulent gravity currents. J. Fluid Mech., 416, 297314.

  • Hsu, H.-H., and M.-Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J. Climate, 18, 795809.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2008: Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J. Climate, 21, 28522868.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. E., 1991: A User’s Guide to Principal Components. John Wiley and Sons, 569 pp.

  • Joseph, B., B. C. Bhatt, T. Y. Koh, and S. Chen, 2008: Sea breeze simulation over the Malay Peninsula in an intermonsoon period. J. Geophys. Res., 113, D20122, doi:10.1029/2008JD010319.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696.

  • Koo, M.-S., and S.-Y. Hong, 2010: Diurnal variations of simulated precipitation over East Asia in two regional climate models. J. Geophys. Res., 115, D05105, doi:10.1029/2009JD012574.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007a: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007b: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844.

    • Search Google Scholar
    • Export Citation
  • Mori, S., H. Jun-Ichi, Y. I. Tauhid, and M. D. Yamanaka, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848.

  • Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and K. Musiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 14451463.

    • Search Google Scholar
    • Export Citation
  • Peng, P. T., A. Kumar, A. G. Barnston, and L. Goddard, 2000: Simulation skills of the SST-forced global climate variability of the NCEP–MRF9 and the Scripps–MPI ECHAM3 models. J. Climate, 13, 36573679.

    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441.

  • Qian, J. H., A. Seth, and S. E. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev., 131, 28572874.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370.

  • Renshaw, A. C., D. P. Rowell, and C. K. Folland, 1998: Wintertime low-frequency weather variability in the North Pacific American sector 1949–93. J. Climate, 11, 10731093.

    • Search Google Scholar
    • Export Citation
  • Ross, A. N., A. M. Tompkins, and D. J. Parker, 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 15821595.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826.

    • Search Google Scholar
    • Export Citation
  • Shibagaki, Y., and Coauthors, 2006: Multiscale aspects of convective systems associated with an intraseasonal oscillation over the Indonesian Maritime Continent. Mon. Wea. Rev., 134, 16821696.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., K. M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, and M. D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and M. Moncrieff, 2008: The Year of Tropical Convection (YOTC) Science Plan: A joint WCRP–W WRP/THORPEX international initiative. WMO/TD 1452, WCRP–130, WWRP/THORPEX 9, 26 pp. [Available online at http://www.ucar.edu/yotc/documents/YOTC_Science_Plan.pdf.]

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski Jr., 2009: Evaluation of precipitation in the Intermountain Region as simulated by the NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448.

  • Wu, P. M., M. Hara, H. Fudeyasu, M. D. Yamanaka, J. Matsumoto, F. Syamsudin, R. Sulistyowati, and Y. S. Djajadihardja, 2007: The impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java Island. SOLA, 3, 9396.

    • Search Google Scholar
    • Export Citation
  • Wu, P. M., M. D. Yamanaka, and J. Matsumoto, 2008: The formation of nocturnal rainfall offshore from convection over western Kalimantan (Borneo) Island. J. Meteor. Soc. Japan, 86, 187203.

    • Search Google Scholar
    • Export Citation
  • Wu, P. M., J.-I. Hamada, M. D. Yamanaka, J. Matsumoto, and M. Hara, 2009a: The impact of orographically-induced gravity wave on the diurnal cycle of rainfall over southeast Kalimantan Island. Atmos. Oceanic Sci. Lett., 2, 3539.

    • Search Google Scholar
    • Export Citation
  • Wu, P. M., M. Hara, J.-I. Hamada, M. D. Yamanaka, and F. Kimura, 2009b: Why a large amount of rain falls over the sea in the vicinity of western Sumatra Island during nighttime. J. Appl. Meteor. Climatol., 48, 13451361.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Zhou, L., and Y. Q. Wang, 2006: Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J. Geophys. Res., 111, D17104, doi:10.1029/2006JD007243.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 837 401 26
PDF Downloads 332 99 10