Universal Frequency Spectra of Surface Meteorological Fluctuations

Chikara Tsuchiya Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Chikara Tsuchiya in
Current site
Google Scholar
PubMed
Close
,
Kaoru Sato Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Kaoru Sato in
Current site
Google Scholar
PubMed
Close
,
Tomoe Nasuno Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Search for other papers by Tomoe Nasuno in
Current site
Google Scholar
PubMed
Close
,
Akira T. Noda Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Search for other papers by Akira T. Noda in
Current site
Google Scholar
PubMed
Close
, and
Masaki Satoh Japan Agency for Marine-Earth Science and Technology, Kanagawa, and Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Search for other papers by Masaki Satoh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Statistical characteristics of surface meteorology are examined in terms of frequency spectra. According to a recent work using hourly data over 50 yr in the Antarctic, the frequency spectra have a characteristic shape proportional to two different powers of the frequency in the frequency ranges lower and higher than a transition frequency of (several days)−1. To confirm the universality of the characteristic spectra, hourly data—including surface temperature, sea level pressure, and zonal and meridional winds—collected over 45 yr at 138 stations in Japan were analyzed. Similar spectral shapes are obtained for any physical quantities at all stations. The spectral slopes clearly depend on the latitude, particularly for sea level pressure, which in the high-frequency range are steeper at higher latitudes. Next, the analysis was extended using realistic simulation data over one month with a nonhydrostatic model to examine the global characteristics of the spectra in the high-frequency range. The model spectra accord well with the observations in Japan. The spectral slopes are largely dependent on the latitude—that is, shallow in the low latitudes, and steep in the middle and high latitudes for all the physical quantities. The latitudinal change of the spectral slope is severe around 30°, which may be due to the dynamical transition from nongeostrophy to geostrophy. The longitudinal variations are also observed according to the geography. The variance is large in the storm-track region for surface pressure, on the continents for temperature and over the ocean for winds.

Corresponding author address: Chikara Tsuchiya, Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan. E-mail: chikara@eps.s.u-tokyo.ac.jp

Abstract

Statistical characteristics of surface meteorology are examined in terms of frequency spectra. According to a recent work using hourly data over 50 yr in the Antarctic, the frequency spectra have a characteristic shape proportional to two different powers of the frequency in the frequency ranges lower and higher than a transition frequency of (several days)−1. To confirm the universality of the characteristic spectra, hourly data—including surface temperature, sea level pressure, and zonal and meridional winds—collected over 45 yr at 138 stations in Japan were analyzed. Similar spectral shapes are obtained for any physical quantities at all stations. The spectral slopes clearly depend on the latitude, particularly for sea level pressure, which in the high-frequency range are steeper at higher latitudes. Next, the analysis was extended using realistic simulation data over one month with a nonhydrostatic model to examine the global characteristics of the spectra in the high-frequency range. The model spectra accord well with the observations in Japan. The spectral slopes are largely dependent on the latitude—that is, shallow in the low latitudes, and steep in the middle and high latitudes for all the physical quantities. The latitudinal change of the spectral slope is severe around 30°, which may be due to the dynamical transition from nongeostrophy to geostrophy. The longitudinal variations are also observed according to the geography. The variance is large in the storm-track region for surface pressure, on the continents for temperature and over the ocean for winds.

Corresponding author address: Chikara Tsuchiya, Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan. E-mail: chikara@eps.s.u-tokyo.ac.jp
Save
  • Allen, S. J., and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100 (D1), 13271350.

    • Search Google Scholar
    • Export Citation
  • Blender, R., and K. Fraedrich, 2003: Long time memory in global warming simulations. Geophys. Res. Lett., 30, 1769, doi:10.1029/2003GL017666.

    • Search Google Scholar
    • Export Citation
  • Bunde, A., J. F. Eichner, S. Havlin, E. Koscielny-Bunde, H. J. Schellnhuber, and D. Vyushin, 2004: Comment on “Scaling of atmosphere and ocean temperature correlations in observations and climate models.” Phys. Rev. Lett., 92, 039801, doi:10.1103/PhysRevLett.92.039801.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Ecklund, W. L., B. B. Balsley, D. A. Carter, A. C. Riddle, M. Crochet, and R. Garello, 1985: Observations of vertical motions in the troposphere and lower stratosphere using three closely spaced ST radars. Radio Sci., 20, 11961206, doi:10.1029/RS020i006p01196.

    • Search Google Scholar
    • Export Citation
  • Eichner, J. F., E. Koscielny-Bunde, A. Bunde, S. Havlin, and H.-J. Schellnhuber, 2003: Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev., 68, 046133, doi:10.1103/PhysRevE.68.046133.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and R. Blender, 2003: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett., 90, 108501, doi:10.1103/PhysRevLett.90.108501.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3, 225264, doi:10.1080/03091927208236082.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80 (3), 291297.

  • Hamilton, K., and R. R. Garcia, 1986: Theory and observations of the short-period normal mode oscillations of the atmosphere. J. Geophys. Res., 91 (D11), 11 86711 875.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models part I. Theory. Tellus, 28, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Hines, C. O., 1991: The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear-instability theory. J. Atmos. Sci., 48, 13481360.

    • Search Google Scholar
    • Export Citation
  • Koscielny-Bunde, E., A. Bunde, S. Havlin, H. E. Roman, Y. Goldreich, and H.-J. Schellnhuber, 1998: Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett., 81, 729732, doi:10.1103/PhysRevLett.81.729.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 (C10), 97079714.

  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J. Climate, 9, 376393.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, H. Tomita, S.-I. Iga, and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217, doi:10.1016/j.atmosres.2009.05.007.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., A. Noda, M. Satoh, H. Miura, H. Tomita, T. Nasuno, and S. Iga, 2009: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian oscillation event in a global cloud-system-resolving model. SOLA, 5, 6568, doi:10.2151/sola.2009–017.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1990: Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. J. Atmos. Sci., 47, 28032817.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and M. Yamada, 1994: Vertical structure of atmospheric gravity waves revealed by the wavelet analysis. J. Geophys. Res., 99 (D10), 20 62320 631.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and N. Hirasawa, 2007: Statistics of Antarctic surface meteorology based on hourly data in 1957–2007 at Syowa Station. Polar Sci., 1, 115, doi:10.1016/j.polar.2007.05.001.

    • Search Google Scholar
    • Export Citation
  • Sato, K., M. Yamamori, S.-Y. Ogino, N. Takahashi, Y. Tomikawa, and T. Yamanouchi, 2003: A meridional scan of the stratospheric gravity wave field over the ocean in 2001 (MeSSO2001). J. Geophys. Res., 108, 4491, doi:10.1029/2002JD003219.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., D. C. Fritts, and T. E. Vanzandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410.

    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.

    • Search Google Scholar
    • Export Citation
  • Talkner, P., and R. O. Weber, 2000: Power spectrum and detrended fluctuation analysis: Application to daily temperatures. Phys. Rev., 62, 150160, doi:10.1103/PhysRevE.62.150.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., H. L. Tanaka, and M. Satoh, 2009: Characteristics of the kinetic energy spectrum of NICAM model atmosphere. SOLA, 5, 180183, doi:10.2151/sola.2009–046.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., and K. Hocke, 2002: Vertical wave number spectrum of temperature fluctuations in the stratosphere using GPS occultation data. J. Meteor. Soc. Japan, 80, 925938, doi:10.2151/jmsj.80.925.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., T. Inoue, S. Kato, S. Fukao, D. C. Fritts, and T. E. VanZandt, 1989: MST radar observations of a saturated gravity wave spectrum. J. Atmos. Sci., 46, 24402447.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578.

  • VanZandt, T. E., 1985: A model for gravity wave spectra observed by Doppler sounding systems. Radio Sci., 20, 13231330, doi:10.1029/RS020i006p01323.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113, D12110, doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1990: Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion. J. Atmos. Sci., 47, 22112226.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 65 3
PDF Downloads 89 36 3