Projecting Rainfall Changes over the South American Altiplano

Marie Minvielle Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by Marie Minvielle in
Current site
Google Scholar
PubMed
Close
and
René D. Garreaud Department of Geophysics, Universidad de Chile, Santiago, Chile

Search for other papers by René D. Garreaud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Consistent with its high elevation (>4000 m) and subtropical location (15°–25°S), the central Andes are expected to become warmer during the twenty-first century, affecting the population, ecosystems, and glaciers on the so-called South American Altiplano. Future changes in regional precipitation (even its sign) have been more difficult to estimate, partly because of the low resolution of current global climate models (GCMs) relative to the cross-mountain scale of the Andes. Nevertheless, summer season rainfall over the Altiplano exhibits a strong dependence on the magnitude of the zonal flow in the free troposphere, as quantified in this work using station data. Since GCMs indicate a consistent increase in westerly flow over the central Andes, hindering moisture transport from the interior of the continent, a simple regression analysis suggests a significant reduction (10%–30%) in Altiplano precipitation by the end of this century under moderate-to-strong greenhouse gas emission scenarios.

Corresponding author address: Marie Minvielle, Departamento de Geofisica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: minvielle@dgf.uchile.cl

Abstract

Consistent with its high elevation (>4000 m) and subtropical location (15°–25°S), the central Andes are expected to become warmer during the twenty-first century, affecting the population, ecosystems, and glaciers on the so-called South American Altiplano. Future changes in regional precipitation (even its sign) have been more difficult to estimate, partly because of the low resolution of current global climate models (GCMs) relative to the cross-mountain scale of the Andes. Nevertheless, summer season rainfall over the Altiplano exhibits a strong dependence on the magnitude of the zonal flow in the free troposphere, as quantified in this work using station data. Since GCMs indicate a consistent increase in westerly flow over the central Andes, hindering moisture transport from the interior of the continent, a simple regression analysis suggests a significant reduction (10%–30%) in Altiplano precipitation by the end of this century under moderate-to-strong greenhouse gas emission scenarios.

Corresponding author address: Marie Minvielle, Departamento de Geofisica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: minvielle@dgf.uchile.cl
Save
  • Aceituno, P., 1993: Elementos del clima en el Altiplano Sudamericano. Rev. Geofis., 44, 3755.

  • Bradley, R. S., M. Vuille, H. F. Diaz, and W. Vergara, 2006: Threats to water supplies in the tropical Andes. Science, 312, 17551756.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon, Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. Garreaud, 2005: Moisture variability over the South American Altiplano during the South American Low Level Jet Experiment (SALLJEX) observing season. J. Geophys. Res., 110, D22105, doi:10.1029/2005JD006152.

    • Search Google Scholar
    • Export Citation
  • Francou, B., M. Vuille, P. Wagnon, J. Mendoza, and J.-E. Sicart, 2003: Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res., 108, 4154, doi:10.1029/2002JD002959.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921.

  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global signatures. Int. J. Climatol., 21, 11811197.

  • Garreaud, R. D., and P. Aceituno, 2001: Interannual rainfall variability over the South American Altiplano. J. Climate, 14, 27792789.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and M. Seluchi, 2003: Pronóstico de la convección en el Altiplano Sud Américano empleando el modelo regional Eta/CPTEC. Meteorologica, 26, 2538.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. C. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 3054, 118.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 33543360.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470.

  • Seth, A., J. Thibeault, M. Garcia, and C. Valdivia, 2010: Making sense of twenty-first-century climate change in the Altiplano: Observed trends and CMIP3 projections. Ann. Assoc. Amer. Geogr., 100, 835847.

    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., A. Seth, and M. Garcia, 2010: Changing climate in the Bolivian Altiplano: CMIP3 projections for temperature and precipitation extremes. J. Geophys. Res., 115, D08103, doi:10.1029/2009JD012718.

    • Search Google Scholar
    • Export Citation
  • Urrutia, R., and M. Vuille, 2009: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res., 114, D02108, doi:10.1029/2008JD011021.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., R. L. Schmoyer, P. M. Steurer, T. C. Peterson, R. Heim, T. R. Karl, and J. Eischeid, 1992: The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory Rep. ORNL/CDIAC-53, NDP-041, Environmental Sciences Division Publ. 3912, 310 pp.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., 1999: Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol., 19, 15791600.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., and C. Ammann, 1997: Regional snowfall patterns in the high, arid Andes. Climatic Change, 36, 413423.

  • Vuille, M., and F. Keimig, 2004: Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J. Climate, 17, 33343348.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., G. Kaser, and I. Juen, 2008: Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global Planet. Change, 62, 1428, doi:10.1016/j.gloplacha.2007.11.003.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 691 278 18
PDF Downloads 431 141 11