• Allan, R. J., 1983: Monsoon and teleconnection variability over Australasia during the Southern Hemisphere summers of 1973–77. Mon. Wea. Rev., 111, 113142.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and A. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18, 519531.

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Brier, G., 1978: The quasi-biennial oscillation and feedback processes in the atmosphere-ocean-earth system. Mon. Wea. Rev., 106, 938946.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009: Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J. Climate, 22, 50465072.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274298.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. S. Giese, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–1995. Part I: Methodology. J. Phys. Oceanogr., 30, 294309.

    • Search Google Scholar
    • Export Citation
  • Chung, C., and S. Nigam, 1999: Asian summer monsoon—ENSO feedback on the Cane–Zebiak model ENSO. J. Climate, 12, 27872807.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 21222143.

  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, in press.

  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3, 168172.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. van Loon, 1988: The Southern Oscillation. Part VII: Meteorological anomalies over the Indian and Pacific sectors associated with the extremes of the oscillation. Mon. Wea. Rev., 116, 120136.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-M., and K.-M. Lau, 2001: Dynamics of monsoon-induced variability in ENSO. Geophys. Res. Lett., 28, 315318.

  • Krishnamurthy, V., and B. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579595.

  • Kucharski, F., A. Bracco, J. H. Hoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Climate, 20, 42554266.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, R. Barimalala and Jin-Ho Yoo, 2011: Contribution of the east-west thermal heating contrast to the South Asian Monsoon and consequences for its variability. Climate Dyn., 37, 721–735.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801.

  • Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, doi:10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. T. Wu, 2001: Principal modes of rainfall–SST variability of the Asian summer monsoon: A reassessment of the monsoon–ENSO relationship. J. Climate, 14, 28802895.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069.

  • Li, T., P. Liu, X. Fu, B. Wang, and G. A. Meehl, 2006: Tempo-spatial structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J. Climate, 19, 30703087.

    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean dipole in the NCAR CSM. J. Climate, 16, 21382158.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 2750.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. J. Climate, 6, 3141.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994a: Coupled land-ocean-atmosphere processes and south Asian monsoon variability. Science, 266, 263267.

  • Meehl, G. A., 1994b: Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Climate, 7, 10331049.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1997: The South Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 19211943.

  • Meehl, G. A., and J. M. Arblaster, 2002a: GCM sensitivity experiments for the Indian monsoon and tropospheric biennial oscillation transition conditions. J. Climate, 15, 923944.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002b: The tropospheric biennial oscillation and Asian–Australian monsoon rainfall. J. Climate, 15, 722744.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2009: A lagged warm event-like response to peaks in solar forcing in the Pacific region. J. Climate, 22, 36473660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Ocean regions and the TBO. J. Climate, 16, 21382158.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, D. Lawrence, A. Seth, E. K. Schneider, B. P. Kirtman, and D. Min, 2006: Monsoon regimes in the CCSM3. J. Climate, 19, 24822495.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, G. Branstator, and H. Van Loon, 2008: A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 28832897.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, 2009a: Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325, 11141118.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and B. D. Santer, 2009b: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., and B. Parthasarathy, 1983: Variability of the Indian summer monsoon and tropical circulation features. Mon. Wea. Rev., 111, 967978.

    • Search Google Scholar
    • Export Citation
  • Nagura, J., and M. Konda, 2007: The seasonal development of an SST anomaly in the Indian Ocean and its relationship to ENSO. J. Climate, 20, 3852.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., M. Latif, and F.-F. Jin, 1994: Dynamics of coupled ocean-atmosphere models: The tropical problem. Annu. Rev. Fluid Mech., 26, 617659, doi:10.1146/annurev.fl.26.010194.003153.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1978: Air-sea interaction and the quasi-biennial oscillation. Mon. Wea. Rev., 106, 15051508.

  • Nicholls, N., 1979: A simple air-sea interaction model. Quart. J. Roy. Meteor. Soc., 105, 93105.

  • Nicholls, N., 1984: The Southern Oscillation and Indonesian sea surface temperature. Mon. Wea. Rev., 112, 424432.

  • Ogasawara, N., A. Kitoh, T. Yasunari, and A. Noda, 1999: Tropospheric Biennial Oscillation of ENSO-monsoon system in the MRI coupled GCM. J. Meteor. Soc. Japan, 77, 12471270.

    • Search Google Scholar
    • Export Citation
  • Pant, G. B., and B. Parthasarathy, 1981: Some aspects of an association between the Southern Oscillation and Indian summer monsoon. Arch. Meteor. Geophys. Bioklimatol., B29, 245252.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., and D. A. Mooley, 1978: Some features of a long homogeneous series of Indian summer monsoon rainfall. Mon. Wea. Rev., 106, 771781.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandra, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Tanaka, M., 1981: Interannual fluctuations of the tropical monsoon circulation over the greater WMONEX area. J. Meteor. Soc. Japan, 59, 825831.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1975: A quasi-biennial standing wave in the Southern Hemispherre and interrelations with sea surface temperature. Quart. J. Roy. Meteor. Soc., 101, 5574.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319.

  • Troup, A. J., 1965: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91, 490506.

  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2007: The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. II: Changing ENSO regmines. Quart. J. Roy. Meteor. Soc., 133, 11591173.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van Loon, H., 1984: The Southern Oscillation. Part III: Associations with the trades and with the trough in the westerlies of the South Pacific Ocean. Mon. Wea. Rev., 112, 947954.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and R. A. Madden, 1981: The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Wea. Rev., 109, 11501162.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and D. J. Shea, 1987: The Southern Oscillation. Part VI: Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon. Wea. Rev., 115, 370379.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and G. A. Meehl, 2008: The response in the Pacific to the Sun’s decadal peaks and contrasts to Cold Events in the Southern Oscillation. J. Atmos. Sol.-Terr. Phys., 70, 10461055.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., G. A. Meehl, and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108, doi:10.1029/2006JD007378.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1923: Correlation in seasonal variations of weather VIII. Mem. Indian Meteor. Dept., 24, 75131.

  • Walker, G. T., 1924: World Weather IX. Mem. Indian Meteor. Dept., 24, 275332.

  • Walker, G. T., and E. W. Bliss, 1930: World Weather IV. Mem. Roy. Meteor. Soc., 3, 8195.

  • Wang, B., and S.-I. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 37093712.

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, A. J. Loschnigg, and M. Leban, 1999: Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997-1998. Nature, 401, 356360.

    • Search Google Scholar
    • Export Citation
  • White, W. B., D. R. Cayan, and J. Lean, 1998: Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations. J. Geophys. Res., 103, 21 35521 366.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Impacts of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17, 30373054.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1990: Impact of Indian monsoon on the coupled atmosphere-ocean system in the tropical Pacific. Meteor. Atmos. Phys., 44, 2941.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., F. Sun, and H.-Y. Kao, 2009: Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3. J. Climate, 22, 18501858.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 1 1 1

Decadal Variability of Asian–Australian Monsoon–ENSO–TBO Relationships

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 National Center for Atmospheric Research, Boulder, Colorado, and CAWCR, Bureau of Meteorology, Melbourne, Australia
Restricted access

Abstract

A set of dynamically coupled ocean–atmosphere mechanisms has previously been proposed for the Asia–Pacific tropics to produce a dominant biennial component of interannual variability [the tropospheric biennial oscillation (TBO)]. Namely, a strong Asian–Australian monsoon is often associated with negative SST anomalies in the equatorial eastern Pacific and a negative Indian Ocean dipole in northern fall between the strong Indian monsoon and strong Australian monsoon, and tends to be followed by a weak monsoon and positive SST anomalies in the Pacific the following year and so on. These connections are communicated through the large-scale east–west (Walker) circulation that involves the full depth of the troposphere. However, the Asia–Pacific climate system is characterized by intermittent decadal fluctuations whereby the TBO during some time periods is more pronounced than others. Observations and models are analyzed to identify processes that make the system less biennial at certain times due to one or some combination of the following:

  1. increased latitudinal extent of Pacific trade winds and wider cold tongue;

  2. warmer tropical Pacific compared to tropical Indian Ocean that weakens trade winds and reduces coupling strength;

  3. eastward shift of the Walker circulation;

  4. reduced interannual variability of Pacific and/or Indian Ocean SSTs.

Decadal time-scale SST variability associated with the interdecadal Pacific oscillation (IPO) has been shown to alter the TBO over the Indo-Pacific region by contributing changes in either some or all of the four factors listed above. Analysis of a multicentury control run of the Community Climate System Model, version 4 (CCSM4), shows that this decadal modulation of interannual variability is transferred via the Walker circulation to the Asian–Australian monsoon region, thus affecting the TBO and monsoon–Pacific connections. Understanding these processes is important to be able to evaluate decadal predictions and longer-term climate change in the Asia–Pacific region.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Gerald Meehl, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: meehl@ucar.edu

Abstract

A set of dynamically coupled ocean–atmosphere mechanisms has previously been proposed for the Asia–Pacific tropics to produce a dominant biennial component of interannual variability [the tropospheric biennial oscillation (TBO)]. Namely, a strong Asian–Australian monsoon is often associated with negative SST anomalies in the equatorial eastern Pacific and a negative Indian Ocean dipole in northern fall between the strong Indian monsoon and strong Australian monsoon, and tends to be followed by a weak monsoon and positive SST anomalies in the Pacific the following year and so on. These connections are communicated through the large-scale east–west (Walker) circulation that involves the full depth of the troposphere. However, the Asia–Pacific climate system is characterized by intermittent decadal fluctuations whereby the TBO during some time periods is more pronounced than others. Observations and models are analyzed to identify processes that make the system less biennial at certain times due to one or some combination of the following:

  1. increased latitudinal extent of Pacific trade winds and wider cold tongue;

  2. warmer tropical Pacific compared to tropical Indian Ocean that weakens trade winds and reduces coupling strength;

  3. eastward shift of the Walker circulation;

  4. reduced interannual variability of Pacific and/or Indian Ocean SSTs.

Decadal time-scale SST variability associated with the interdecadal Pacific oscillation (IPO) has been shown to alter the TBO over the Indo-Pacific region by contributing changes in either some or all of the four factors listed above. Analysis of a multicentury control run of the Community Climate System Model, version 4 (CCSM4), shows that this decadal modulation of interannual variability is transferred via the Walker circulation to the Asian–Australian monsoon region, thus affecting the TBO and monsoon–Pacific connections. Understanding these processes is important to be able to evaluate decadal predictions and longer-term climate change in the Asia–Pacific region.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Gerald Meehl, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: meehl@ucar.edu
Save