• Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, P. Delecluse, S. Gualdi, and A. Navarra, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Cai, W., H. F. L. Hendon, and G. Meyers, 2005: Indian Ocean dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18, 14491468.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009: Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys. Res. Lett., 36, L23704, doi:10.1029/2009GL040163.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Hong, C.-C., and T. Li, 2010: Independence of SST skewness from thermocline feedback in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 37, L11702, doi:10.1029/2010GL043380.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008a: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, and J.-J. Luo, 2008b: Asymmetry of the Indian Ocean dipole. Part II: Model diagnosis. J. Climate, 21, 48494858.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Li, T., 1997a: Air–sea interactions of relevance to the ITCZ: Analysis of coupled instabilities and experiments in a hybrid coupled GCM. J. Atmos. Sci., 54, 134147.

    • Search Google Scholar
    • Export Citation
  • Li, T., 1997b: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 28722887.

  • Li, T., and B. Wang, 1994: A thermodynamic equilibrium climate model for monthly mean surface winds and precipitation over the tropical Pacific. J. Atmos. Sci., 51, 13721385.

    • Search Google Scholar
    • Export Citation
  • Li, T., and S. G. H. Philander, 1996: On the annual cycle of the equatorial eastern Pacific. J. Climate, 9, 29862998.

  • Li, T., Y. Zhang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2110, doi:10.1029/2002GL015789.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135.

  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, doi:10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Matthew, H. E., C. C. Ummenhofer, and A. Santoso, 2006: Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J. Climate, 19, 19481969.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 261290.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003a: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003b: Structure of SST and surface wind variability during Indian Ocean dipole mode years: COADS observations. J. Climate, 16, 27352751.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S. P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 43974417.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2007: Indian Ocean variability in the GFDL coupled climate model. J. Climate, 20, 28952916.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–211.

    • Search Google Scholar
    • Export Citation
  • Yu, W., B. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, doi:10.1029/2005GL024327.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, G. A. Vecchi, Q. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23, 12401253.

    • Search Google Scholar
    • Export Citation
  • Zhong, A., H. H. Hendon, and O. Alves, 2005: Indian Ocean variability and its association with ENSO in a global coupled model. J. Climate, 18, 36343649.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 0 0 0

Dynamic and Thermodynamic Air–Sea Coupling Associated with the Indian Ocean Dipole Diagnosed from 23 WCRP CMIP3 Models

View More View Less
  • 1 Center for Ocean and Climate Research, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
  • | 2 International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

The performance of 23 World Climate Research Programme (WCRP) Coupled Model Intercomparison Project, phase 3 (CMIP3) models in the simulation of the Indian Ocean dipole (IOD) is evaluated, and the results show large diversity in the simulated IOD intensity. A detailed diagnosis is carried out to understand the role of the Bjerknes dynamic air–sea feedback and the thermodynamic air–sea coupling in shaping the different model behaviors. The Bjerknes feedback processes include the equatorial zonal wind response to SST, the thermocline response to the equatorial zonal wind, and the ocean subsurface temperature response to the thermocline variation. The thermodynamic feedback examined includes the wind–evaporation–SST and cloud–radiation–SST feedbacks. A combined Bjerknes and thermodynamic feedback intensity index is introduced. This index well reflects the simulated IOD strength contrast among the strong, moderate, and weak model groups. It gives a quantitative measure of the relative contribution of the dynamic and thermodynamic feedback processes.

The distinctive features in the dynamic and thermodynamic coupling strength are closely related to the mean state difference in the coupled models. A shallower (deeper) equatorial mean thermocline, a stronger (weaker) background vertical temperature gradient, and a greater (smaller) mean vertical upwelling velocity are found in the strong (weak) IOD simulation group. Thus, the mean state biases greatly affect the air–sea coupling strength on the interannual time scale. A number of models failed to simulate the observed positive wind–evaporation–SST feedback during the IOD developing phase. Analysis indicates that the bias arises from a greater contribution to the surface latent heat flux anomaly by the sea–air specific humidity difference than by the wind speed anomaly.

International Pacific Research Center Contribution Number 769 and School of Ocean and Earth Science and Technology Contribution Number 8119.

Corresponding author address: Weidong Yu, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China. E-mail: wdyu@fio.org.cn

Abstract

The performance of 23 World Climate Research Programme (WCRP) Coupled Model Intercomparison Project, phase 3 (CMIP3) models in the simulation of the Indian Ocean dipole (IOD) is evaluated, and the results show large diversity in the simulated IOD intensity. A detailed diagnosis is carried out to understand the role of the Bjerknes dynamic air–sea feedback and the thermodynamic air–sea coupling in shaping the different model behaviors. The Bjerknes feedback processes include the equatorial zonal wind response to SST, the thermocline response to the equatorial zonal wind, and the ocean subsurface temperature response to the thermocline variation. The thermodynamic feedback examined includes the wind–evaporation–SST and cloud–radiation–SST feedbacks. A combined Bjerknes and thermodynamic feedback intensity index is introduced. This index well reflects the simulated IOD strength contrast among the strong, moderate, and weak model groups. It gives a quantitative measure of the relative contribution of the dynamic and thermodynamic feedback processes.

The distinctive features in the dynamic and thermodynamic coupling strength are closely related to the mean state difference in the coupled models. A shallower (deeper) equatorial mean thermocline, a stronger (weaker) background vertical temperature gradient, and a greater (smaller) mean vertical upwelling velocity are found in the strong (weak) IOD simulation group. Thus, the mean state biases greatly affect the air–sea coupling strength on the interannual time scale. A number of models failed to simulate the observed positive wind–evaporation–SST feedback during the IOD developing phase. Analysis indicates that the bias arises from a greater contribution to the surface latent heat flux anomaly by the sea–air specific humidity difference than by the wind speed anomaly.

International Pacific Research Center Contribution Number 769 and School of Ocean and Earth Science and Technology Contribution Number 8119.

Corresponding author address: Weidong Yu, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China. E-mail: wdyu@fio.org.cn
Save