• Arakawa, A., and W. H. Schubert, 1974: Interaction of cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 11271145.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I. Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121.

  • Chang, P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere instability of relevance to the seasonal cycle. J. Atmos. Sci., 51, 36273648.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2010: A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. J. Atmos. Sci., 67, 21942211.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and M.-S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., Y. Wang, S.-P. Xie, and T. Miyama, 2006: Effect of shallow convection on the eastern Pacific climate in a coupled model. Geophys. Res. Lett., 33, L17713, doi:10.1029/2006GL026715.

    • Search Google Scholar
    • Export Citation
  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79, 939947.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensembles characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J.-J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126, 16851710.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Lau, N.-C., H.-T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate, 10, 381392.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and G. L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16, 19671985.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J. Climate, 20, 45484571.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., D. G. Hahn, and J. L. Holloway, 1974: The seasonal variation of the tropical circulation as simulated by a global model of the atmosphere. J. Atmos. Sci., 31, 4383.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Pan, D.-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere–ocean model for transient climate change studies. Atmos.–Ocean, 33, 683730.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127, 29772991.

  • Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent-heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, and W.-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47, 620640.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng, C. Yokoyama, and T. L’Ecuyer, 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and three-dimensional cloud-resolving model simulations. J. Climate, 22, 55775594.

    • Search Google Scholar
    • Export Citation
  • Song, X., and G. Zhang, 2009a: Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. J. Climate, 22, 42994315.

    • Search Google Scholar
    • Export Citation
  • Song, X., and G. Zhang, 2009b: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Climate, 22, 146164.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 71837192.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 3060-day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S.-P. Xie, B. Wang, and H. Xu, 2005: Large-scale atmospheric forcing by southeast Pacific boundary layer clouds: A regional model study. J. Climate, 18, 934951.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., S. Emori, M. Satoh, and H. Miura, 2009: A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dyn., 33, 795816.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562.

  • Xie, S., T. Hume, C. Jakob, S. A. Klein, R. B. McCoy, and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 5779.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Past, Present, and Future, Kluwer Academic, 121–152.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2007: A regional ocean–atmosphere model for eastern Pacific climate: Towards reducing tropical biases. J. Climate, 20, 15041522.

    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Wang, and S.-P. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17, 589602.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., D. L. Hartmann, and R. Wood, 2008: Dynamic effects on the tropical cloud radiative forcing and radiation budget. J. Climate, 21, 23372351.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 3, 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., W. Lin, and M. Zhang, 2007: Toward understanding the double intertropical convergence zone pathology in coupled ocean–atmosphere general circulation models. J. Geophys. Res., 112, D12102, doi:10.1029/2006JD007878.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 38
PDF Downloads 18 18 18

Precipitation Reproducibility over Tropical Oceans and Its Relationship to the Double ITCZ Problem in CMIP3 and MIROC5 Climate Models

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
Restricted access

Abstract

Precipitation reproducibility over the tropical oceans in climate models is examined. Models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) and the current (fifth) version Model for Interdisciplinary Research on Climate (MIROC5) developed by the Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Research Institute for Global Change (AORI/NIES/RIGC) are analyzed. Scores of a pattern similarity between precipitation in the models and that in observations are evaluated. The low score models (LSMs) overestimate (underestimate) precipitation over large-scale subsidence (ascending) regions compared to the high score models (HSMs). The sensitivity of deep convection to sea surface temperature (SST) and large-scale subsidence is examined; analysis suggests that dynamical suppression of deep convection by the entrainment of environmental dry air over the subsidence region is very weak, and deep convection follows SST closely in LSMs. For example, deep convective activity is identified over the southeastern Pacific in LSMs, which corresponds to the double intertropical convergence zone (ITCZ) problem. It is suggested that the double ITCZ is associated not only with the local SST but also with the precipitation schemes that control deep convection over the entire tropical oceans. The current version, MIROC5, reproduces precipitation distributions significantly better than the older versions. Precipitation in MIROC5 has a weaker correlation with SST and a stronger correlation with environmental humidity than that in LSMs. The realistic representation of entrainment in regions with dynamical suppression is suggested to be a key factor for better reproducibility of precipitation distributions.

Corresponding author address: Nagio Hirota, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan. E-mail: nagio@aori.u-tokyo.ac.jp

Abstract

Precipitation reproducibility over the tropical oceans in climate models is examined. Models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) and the current (fifth) version Model for Interdisciplinary Research on Climate (MIROC5) developed by the Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Research Institute for Global Change (AORI/NIES/RIGC) are analyzed. Scores of a pattern similarity between precipitation in the models and that in observations are evaluated. The low score models (LSMs) overestimate (underestimate) precipitation over large-scale subsidence (ascending) regions compared to the high score models (HSMs). The sensitivity of deep convection to sea surface temperature (SST) and large-scale subsidence is examined; analysis suggests that dynamical suppression of deep convection by the entrainment of environmental dry air over the subsidence region is very weak, and deep convection follows SST closely in LSMs. For example, deep convective activity is identified over the southeastern Pacific in LSMs, which corresponds to the double intertropical convergence zone (ITCZ) problem. It is suggested that the double ITCZ is associated not only with the local SST but also with the precipitation schemes that control deep convection over the entire tropical oceans. The current version, MIROC5, reproduces precipitation distributions significantly better than the older versions. Precipitation in MIROC5 has a weaker correlation with SST and a stronger correlation with environmental humidity than that in LSMs. The realistic representation of entrainment in regions with dynamical suppression is suggested to be a key factor for better reproducibility of precipitation distributions.

Corresponding author address: Nagio Hirota, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan. E-mail: nagio@aori.u-tokyo.ac.jp
Save