• Adler, R. F., C. Kidd, G. Petty, M. Morrissey, and H. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, doi:10.1002/joc.2059.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2006: NASA’s Modern Era Retrospective-analysis for Research and Applications (MERRA). U.S. CLIVAR Variations, Vol. 4, No. 2, 5–8. [Available online at http://www.usclivar.org/Newsletter/Variations_V4N2/CLIVAR%20NL%20MERRA.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, in press.

  • Chou, S. H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C. L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard Satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 32563273.

    • Search Google Scholar
    • Export Citation
  • Chou, S. H., E. Nelkin, J. Ardizzone, and R. M. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17, 39733989.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1949 to 2004. J. Climate, 22, 27732791.

    • Search Google Scholar
    • Export Citation
  • Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize radiosonde humidity data. J. Climate, 24, 965991.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, in press.

  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16, 32743295.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20, 40334046.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jiang, C., M. F. Cronin, K. A. Kelly, and L. Thompson, 2005: Evaluation of a hybrid satellite- and NWP-based turbulent heat flux product using the Tropical Atmosphere-Ocean (TAO) buoys. J. Geophys. Res., 110, C09007, doi:10.1029/2004JC002824.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12, 28562880.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Robertson, F. R., D. E. Fitzjarrald, and C. D. Kummerow, 2003: Effects of uncertainty in TRMM precipitation radar path integrated attenuation on interannual variations of tropical oceanic rainfall. Geophys. Res. Lett., 30, 1180, doi:10.1029/2002GL016416.

    • Search Google Scholar
    • Export Citation
  • Rosen, R. D., and A. S. Omolayo, 1981: Exchange of water vapor between land and ocean in the Northern Hemisphere. J. Geophys. Res., 86, 12 14712 152.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Sapiano, M. R. P., T. M. Smith, and P. A. Arkin, 2008: A new merged analysis of precipitation utilizing satellite and reanalysis data. J. Geophys. Res., 113, D22103, doi:10.1029/2008JD010310.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 13161338.

  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf.]

    • Search Google Scholar
    • Export Citation
  • Simmons, A., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14, 40624072.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., M. R. P. Sapiano, and P. A. Arkin, 2008: Historical reconstruction of monthly oceanic precipitation (1900-2006). J. Geophys. Res., 113, D17115, doi:10.1029/2008JD009851.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. Geophys. Res. Lett., 34, L20805, doi:10.1029/2007GL030259.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873.

  • Sturaro, G., 2003: A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Climate Dyn., 21, 309316.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, and D. P. Chambers, 2009: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeor., 10, 2240.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, D. P. Chambers, J. K. Willis, and K. Hilburn, 2010: Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. USA, 42, 17 91617 921, doi:10.1073/pnas.1003292107.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2009: An imperative for climate change planning: Tracking Earth’s global energy. Curr. Opinion Environ. Sustain., 1, 1927, doi:10.1016/j.cosust.2009.06.001.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138.

  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, doi:10.1029/2007GL030524.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15, 33433360.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated water vapor. Climate Dyn., 24, 741758.

  • Trenberth, K. E., and Coauthors, 2007a: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Sciences Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007b: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Trenberth, K. E., and Coauthors, 2011: Atmospheric reanalyses: A major resource for ocean product development and modeling. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society Conf., Vol. 2, ESA Publ. WPP-306, Venice, Italy, ESA, 8 pp. [Available online at http://www.oceanobs09.net/proceedings/cwp/Trenberth-OceanObs09.cwp.90.pdf.]

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, doi:10.1029/2010WR009127.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 12071222.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 56
PDF Downloads 51 51 51

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

An assessment is made of the global energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate model referred to as CCSM4 is also given. The focus is on the mean ocean, land, and global precipitation P; the corresponding evaporation E; their difference corresponding to the surface freshwater flux E–P; and the vertically integrated atmospheric moisture transports. Using the model-based P and E, the time- and area-average E–P for the oceans, P–E for land, and the moisture transport from ocean to land should all be identical but are not close in most reanalyses, and often differ significantly from observational estimates of the surface return flow based on net river discharge into the oceans. Their differences reveal outstanding issues with atmospheric models and their biases, which are manifested as analysis increments in the reanalyses. The NCAR CCSM4, along with most reanalysis models, the exception being MERRA, has too-intense water cycling (P and E) over the ocean although ocean-to-land transports are very close to observed. Precipitation from reanalyses that assimilate moisture from satellite observations exhibits large changes identified with the changes in the observing system, as new and improved temperature and water vapor channels are assimilated and, while P improves after about 2002, E–P does not. Discrepancies among hydrological cycle components arise from analysis increments that can add or subtract moisture. The large-scale moisture budget divergences are more stable in time and similar across reanalyses than model-based estimates of E–P. Results are consistent with the view that recycling of moisture is too large in most models and the lifetime of moisture is too short. For the energy cycle, most reanalyses have spurious imbalances of ~10 W m−2 within the atmosphere, and ~5–10 W m−2 in net fluxes into the surface and to space. Major improvements are needed in model treatment and assimilation of moisture, and surface fluxes from reanalyses should only be used with great caution.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin E. Trenberth, NCAR, P. O. Box 3000, Boulder, CO 80307. E-mail: trenbert@ucar.edu

Abstract

An assessment is made of the global energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate model referred to as CCSM4 is also given. The focus is on the mean ocean, land, and global precipitation P; the corresponding evaporation E; their difference corresponding to the surface freshwater flux E–P; and the vertically integrated atmospheric moisture transports. Using the model-based P and E, the time- and area-average E–P for the oceans, P–E for land, and the moisture transport from ocean to land should all be identical but are not close in most reanalyses, and often differ significantly from observational estimates of the surface return flow based on net river discharge into the oceans. Their differences reveal outstanding issues with atmospheric models and their biases, which are manifested as analysis increments in the reanalyses. The NCAR CCSM4, along with most reanalysis models, the exception being MERRA, has too-intense water cycling (P and E) over the ocean although ocean-to-land transports are very close to observed. Precipitation from reanalyses that assimilate moisture from satellite observations exhibits large changes identified with the changes in the observing system, as new and improved temperature and water vapor channels are assimilated and, while P improves after about 2002, E–P does not. Discrepancies among hydrological cycle components arise from analysis increments that can add or subtract moisture. The large-scale moisture budget divergences are more stable in time and similar across reanalyses than model-based estimates of E–P. Results are consistent with the view that recycling of moisture is too large in most models and the lifetime of moisture is too short. For the energy cycle, most reanalyses have spurious imbalances of ~10 W m−2 within the atmosphere, and ~5–10 W m−2 in net fluxes into the surface and to space. Major improvements are needed in model treatment and assimilation of moisture, and surface fluxes from reanalyses should only be used with great caution.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin E. Trenberth, NCAR, P. O. Box 3000, Boulder, CO 80307. E-mail: trenbert@ucar.edu
Save