• Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3844.

  • Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37, 857875.

    • Search Google Scholar
    • Export Citation
  • Goody, R., J. Anderson, and G. R. North, 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc., 79, 25412549.

  • Goody, R., J. Anderson, T. Karl, R. Balstad Miller, G. R. North, J. Simpson, G. Stephens, and W. Washington, 2002: Why we should monitor the climate. Bull. Amer. Meteor. Soc., 83, 873878.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. Leroy, P. J. Gero, J. Dykema, and J. Anderson, 2010: Separation of longwave climate feedbacks from spectral observations. J. Geophys. Res., 115, D07104, doi:10.1029/2009JD012766.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789.

    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, J. A. Dykema, and R. M. Goody, 2008a: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875.

    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, and G. Ohring, 2008b: Climate signal detection times and constraints on climate benchmark accuracy requirements. J. Climate, 21, 841846.

    • Search Google Scholar
    • Export Citation
  • Li, Z., M. C. Cribb, F.-L. Chang, A. Trishchenko, and Y. Luo, 2005: Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region. J. Geophys. Res., 110, D15S19, doi:10.1029/2004JD005028.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 2000: Automatic self-calibration of the ARM microwave radiometers. Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, P. Pampaloni and S. Paloscia, Eds., VSP Press, 433–443.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., E. G. Dutton, J. A. Augustine, W. Wiscombe, M. Wild, S. A. McFarlane, and C. J. Flynn, 2009: Significant decadal brightening of downwelling shortwave in the continental United States. J. Geophys. Res., 114, D00D06, doi:10.1029/2008JD011263.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., N. Beagley, and T. P. Ackerman, 2009: Evaluation of hydrometeor occurrence profiles in the multiscale modeling framework climate model using atmospheric classification. J. Climate, 22, 45574573.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J., F. Denn, C. Flynn, G. Hodges, P. Kiedron, A. Koontz, J. Schlemmer, and S. E. Schwartz, 2010: Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008. J. Geophys. Res., 115, D07203, doi:10.1029/2009JD012197.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, 1988: Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the High-Resolution Interferometer Sounder. Appl. Opt., 27, 32103218.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 2003: The ARM Program’s water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84, 217236.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol., 16, 323333.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2008: Ground-based retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res., 113, D00E03, doi:10.1029/2008JD010054.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and P. J. Gero, 2011: Downwelling 10 μm radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 116, D08212, doi:10.1029/2010JD015135.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. A. Ferrare, and L. A. Brasseur, 2001: Average aerosol extinction and water vapor profiles over the Southern Great Plains. Geophys. Res. Lett., 28, 44414444.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61, 26572675.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker, 2006: Noise reduction of the Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 14917 161.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 29
PDF Downloads 12 12 12

Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains

View More View Less
  • 1 Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
  • | 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. Southern Great Plains. The highly accurate calibration of the AERI instrument, performed every 10 min, ensures that any statistically significant trend in the observed data over this time can be attributed to changes in the atmospheric properties and composition, and not to changes in the sensitivity or responsivity of the instrument. The measured infrared spectra, numbering more than 800 000, were classified as clear-sky, thin cloud, and thick cloud scenes using a neural network method. The AERI data record demonstrates that the downwelling infrared radiance is decreasing over this 14-yr period in the winter, summer, and autumn seasons but it is increasing in the spring; these trends are statistically significant and are primarily due to long-term change in the cloudiness above the site. The AERI data also show many statistically significant trends on annual, seasonal, and diurnal time scales, with different trend signatures identified in the separate scene classifications. Given the decadal time span of the dataset, effects from natural variability should be considered in drawing broader conclusions. Nevertheless, this dataset has high value owing to the ability to infer possible mechanisms for any trends from the observations themselves and to test the performance of climate models.

Corresponding author address: Dr. P. Jonathan Gero, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: jonathan.gero@ssec.wisc.edu

Abstract

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. Southern Great Plains. The highly accurate calibration of the AERI instrument, performed every 10 min, ensures that any statistically significant trend in the observed data over this time can be attributed to changes in the atmospheric properties and composition, and not to changes in the sensitivity or responsivity of the instrument. The measured infrared spectra, numbering more than 800 000, were classified as clear-sky, thin cloud, and thick cloud scenes using a neural network method. The AERI data record demonstrates that the downwelling infrared radiance is decreasing over this 14-yr period in the winter, summer, and autumn seasons but it is increasing in the spring; these trends are statistically significant and are primarily due to long-term change in the cloudiness above the site. The AERI data also show many statistically significant trends on annual, seasonal, and diurnal time scales, with different trend signatures identified in the separate scene classifications. Given the decadal time span of the dataset, effects from natural variability should be considered in drawing broader conclusions. Nevertheless, this dataset has high value owing to the ability to infer possible mechanisms for any trends from the observations themselves and to test the performance of climate models.

Corresponding author address: Dr. P. Jonathan Gero, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: jonathan.gero@ssec.wisc.edu
Save