Probabilistic Estimates of Transient Climate Sensitivity Subject to Uncertainty in Forcing and Natural Variability

Lauren E. Padilla Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Lauren E. Padilla in
Current site
Google Scholar
PubMed
Close
,
Geoffrey K. Vallis GFDL, Princeton University, Princeton, New Jersey

Search for other papers by Geoffrey K. Vallis in
Current site
Google Scholar
PubMed
Close
, and
Clarence W. Rowley Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Clarence W. Rowley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the authors address the impact of uncertainty on estimates of transient climate sensitivity (TCS) of the globally averaged surface temperature, including both uncertainty in past forcing and internal variability in the climate record. This study provides a range of probabilistic estimates of the TCS that combine these two sources of uncertainty for various underlying assumptions about the nature of the uncertainty. The authors also provide estimates of how quickly the uncertainty in the TCS may be expected to diminish in the future as additional observations become available. These estimates are made using a nonlinear Kalman filter coupled to a stochastic, global energy balance model, using the filter and observations to constrain the model parameters. This study verifies that model and filter are able to emulate the evolution of a comprehensive, state-of-the-art atmosphere–ocean general circulation model and to accurately predict the TCS of the model, and then apply the methodology to observed temperature and forcing records of the twentieth century.

For uncertainty assumptions best supported by global surface temperature data up to the present time, this paper finds a most likely present-day estimate of the transient climate sensitivity to be 1.6 K, with 90% confidence the response will fall between 1.3 and 2.6 K, and it is estimated that this interval may be 45% smaller by the year 2030. The authors calculate that emissions levels equivalent to forcing of less than 475 ppmv CO2 concentration are needed to ensure that the transient temperature response will not exceed 2 K with 95% confidence. This is an assessment for the short-to-medium term and not a recommendation for long-term stabilization forcing; the equilibrium temperature response to this level of CO2 may be much greater. The flat temperature trend of the last decade has a detectable but small influence on TCS. This study describes how the results vary if different uncertainty assumptions are made and shows they are robust to variations in the initial prior probability assumptions.

Corresponding author address: G. K. Vallis, AOS Program, Princeton University, Princeton, NJ 08544. E-mail: gkv@princeton.edu

Abstract

In this paper, the authors address the impact of uncertainty on estimates of transient climate sensitivity (TCS) of the globally averaged surface temperature, including both uncertainty in past forcing and internal variability in the climate record. This study provides a range of probabilistic estimates of the TCS that combine these two sources of uncertainty for various underlying assumptions about the nature of the uncertainty. The authors also provide estimates of how quickly the uncertainty in the TCS may be expected to diminish in the future as additional observations become available. These estimates are made using a nonlinear Kalman filter coupled to a stochastic, global energy balance model, using the filter and observations to constrain the model parameters. This study verifies that model and filter are able to emulate the evolution of a comprehensive, state-of-the-art atmosphere–ocean general circulation model and to accurately predict the TCS of the model, and then apply the methodology to observed temperature and forcing records of the twentieth century.

For uncertainty assumptions best supported by global surface temperature data up to the present time, this paper finds a most likely present-day estimate of the transient climate sensitivity to be 1.6 K, with 90% confidence the response will fall between 1.3 and 2.6 K, and it is estimated that this interval may be 45% smaller by the year 2030. The authors calculate that emissions levels equivalent to forcing of less than 475 ppmv CO2 concentration are needed to ensure that the transient temperature response will not exceed 2 K with 95% confidence. This is an assessment for the short-to-medium term and not a recommendation for long-term stabilization forcing; the equilibrium temperature response to this level of CO2 may be much greater. The flat temperature trend of the last decade has a detectable but small influence on TCS. This study describes how the results vary if different uncertainty assumptions are made and shows they are robust to variations in the initial prior probability assumptions.

Corresponding author address: G. K. Vallis, AOS Program, Princeton University, Princeton, NJ 08544. E-mail: gkv@princeton.edu
Save
  • Allen, M. R., P. Stott, J. F. B. Mitchell, J. F. B. Schnur, and T. L. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617620.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., J. C. Hargreaves, R. Ohgaito, A. Abe-Ouchi, and S. Emori, 2005a: Efficiently constraining climate sensitivity with ensembles of paleoclimate simulations. SOLA, 1, 181184.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005b: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys., 12, 363371.

    • Search Google Scholar
    • Export Citation
  • Baker, M., and G. Roe, 2009: The shape of things to come: Why is climate change so predictable? J. Climate, 22, 45744589.

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulations and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer, 280 pp.

  • Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster, 2002: Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295, 113117.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. H. Stone, and A. P. Sokolov, 2006: Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys. Res. Lett., 33, L01705, doi:10.1029/2005GL023977.

    • Search Google Scholar
    • Export Citation
  • Frame, D. J., B. B. B. Booth, J. A. Kettleborough, D. A. Stainforth, J. M. Gregory, M. Collins, and M. R. Allen, 2005: Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett., 32, L09702, doi:10.1029/2004GL022241.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging method. J. Climate, 15, 11411158.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19, 43264343.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2007: Dangerous human-made interference with climate: A GISS model study. Atmos. Chem. Phys., 7, 22872312, doi:10.5194/acp-7-2287-2007.

    • Search Google Scholar
    • Export Citation
  • Harvey, L. D. D., and R. Kaufmann, 2002: Simultaneously constraining climate sensitivity and aerosol radiative forcing. J. Climate, 15, 28372861.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1997: Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dyn., 13, 601611.

  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

    • Search Google Scholar
    • Export Citation
  • Held, I., M. Winton, K. Takahashi, T. L. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2010: Compensation between model feedbacks and curtailment of climate sensitivity. J. Climate, 23, 30093018.

  • Julier, S., 2002: The scaled unscented transformation. Proc. American Control Conf., Anchorage, AK, Institute of Electrical and Electronics Engineers, Vol. 6, 4555–4559.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 2007: Twentieth-century climate model response and climate sensitivity. Geophys. Res. Lett., 34, L22710, doi:10.1029/2007GL031383.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2008: Why are climate models reproducing the observed global surface warming so well? Geophys. Res. Lett., 35, L18704, doi:10.1029/2008GL034932.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and L. Tomassini, 2008: Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett., 35, L09701, doi:10.1029/2007GL032904.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and Coauthors, 2008: A review of uncertainties in global temperature projections over the twenty-first century. J. Climate, 21, 26512663.

    • Search Google Scholar
    • Export Citation
  • Majda, A., I. Timofeyev, and E. Eijnden, 2001: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math., 54, 891974.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., 2010: Constraining climate sensitivity with linear fits to outgoing radiation. Geophys. Res. Lett., 37, L09704, doi:10.1029/2010GL042911.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., E. Highwood, K. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 27152718.

    • Search Google Scholar
    • Export Citation
  • Pachauri, R. K., and A. Reisinger, Eds., 2007: Climate Change 2007: Synthesis Report. Cambridge University Press, 104 pp.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C., J. Gregory, and R. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124130.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., and M. B. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318, 629632.

  • Schellnhuber, H., W. Cramer, N. Nakicenovic, T. Wigley, and G. Yohe, Eds., 2006: Avoiding Dangerous Climate Change. Cambridge University Press, 392 pp.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and J. A. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416, 723726.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming. J. Climate, 19, 30553069.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264280.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 562 129 9
PDF Downloads 173 49 1