An Assessment of the Uncertainties in Ocean Surface Turbulent Fluxes in 11 Reanalysis, Satellite-Derived, and Combined Global Datasets

Michael A. Brunke Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Michael A. Brunke in
Current site
Google Scholar
PubMed
Close
,
Zhuo Wang Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
,
Xubin Zeng Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
,
Michael Bosilovich NASA Goddard Modeling and Assimilation Office, Greenbelt, Maryland

Search for other papers by Michael Bosilovich in
Current site
Google Scholar
PubMed
Close
, and
Chung-Lin Shie Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, and Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Chung-Lin Shie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean surface turbulent fluxes play an important role in the energy and water cycles of the atmosphere–ocean coupled system, and several flux products have become available in recent years. Here, turbulent fluxes from 6 widely used reanalyses, 4 satellite-derived flux products, and 2 combined product are evaluated by comparison with direct covariance latent heat (LH) and sensible heat (SH) fluxes and inertial-dissipation wind stresses measured from 12 cruises over the tropics and mid- and high latitudes. The biases range from −3.0 to 20.2 W m−2 for LH flux, from −1.4 to 6.0 W m−2 for SH flux, and from −7.6 to 7.9 × 10−3 N m−2 for wind stress. These biases are small for moderate wind speeds but diverge for strong wind speeds (>10 m s−1). The total flux biases are then further evaluated by dividing them into uncertainties due to errors in the bulk variables and the residual uncertainty. The bulk-variable-caused uncertainty dominates many products’ SH flux and wind stress biases. The biases in the bulk variables that contribute to this uncertainty can be quite high depending on the cruise and the variable. On the basis of a ranking of each product’s flux, it is found that the Modern-Era Retrospective Analysis for Research and Applications (MERRA) is among the “best performing” for all three fluxes. Also, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) reanalysis are among the best performing for two of the three fluxes. Of the satellite-derived products, version 2b of the Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2b) is among the best performing for two of the three fluxes. Also among the best performing for only one of the fluxes are the 40-yr ERA (ERA-40) and the combined product objectively analyzed air–sea fluxes (OAFlux). Direction for the future development of ocean surface flux datasets is also suggested.

Corresponding author address: Michael A. Brunke, Department of Atmospheric Sciences, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721-0081. E-mail: brunke@atmo.arizona.edu

This article is included in the MERRA: Modern Era Retrospective-Analysis for Research and Applications special collection.

Abstract

Ocean surface turbulent fluxes play an important role in the energy and water cycles of the atmosphere–ocean coupled system, and several flux products have become available in recent years. Here, turbulent fluxes from 6 widely used reanalyses, 4 satellite-derived flux products, and 2 combined product are evaluated by comparison with direct covariance latent heat (LH) and sensible heat (SH) fluxes and inertial-dissipation wind stresses measured from 12 cruises over the tropics and mid- and high latitudes. The biases range from −3.0 to 20.2 W m−2 for LH flux, from −1.4 to 6.0 W m−2 for SH flux, and from −7.6 to 7.9 × 10−3 N m−2 for wind stress. These biases are small for moderate wind speeds but diverge for strong wind speeds (>10 m s−1). The total flux biases are then further evaluated by dividing them into uncertainties due to errors in the bulk variables and the residual uncertainty. The bulk-variable-caused uncertainty dominates many products’ SH flux and wind stress biases. The biases in the bulk variables that contribute to this uncertainty can be quite high depending on the cruise and the variable. On the basis of a ranking of each product’s flux, it is found that the Modern-Era Retrospective Analysis for Research and Applications (MERRA) is among the “best performing” for all three fluxes. Also, the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) reanalysis are among the best performing for two of the three fluxes. Of the satellite-derived products, version 2b of the Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2b) is among the best performing for two of the three fluxes. Also among the best performing for only one of the fluxes are the 40-yr ERA (ERA-40) and the combined product objectively analyzed air–sea fluxes (OAFlux). Direction for the future development of ocean surface flux datasets is also suggested.

Corresponding author address: Michael A. Brunke, Department of Atmospheric Sciences, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721-0081. E-mail: brunke@atmo.arizona.edu

This article is included in the MERRA: Modern Era Retrospective-Analysis for Research and Applications special collection.

Save
  • Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

    • Search Google Scholar
    • Export Citation
  • Alpert, J. C., S.-Y. Hong, and Y.-J. Kim, 1996: Sensitivity of cyclogenesis to lower tropospheric enhancement of gravity wave drag using the environmental modeling center medium range model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 322–323.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Graßl, and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data, 2, 215234.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forder, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16, 637656.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., L. Takacs, A. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, in press.

  • Bourras, D., 2006: Comparison of five satellite-derived latent heat flux products to moored buoy data. J. Climate, 19, 62916313.

  • Bourras, D., L. Eymard, and W. T. Liu, 2002: A neural network to estimate the latent heat flux over oceans from satellite observations. Int. J. Remote Sens., 23, 24052423.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., X. Zeng, and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res., 107, 3141, doi:10.1029/2001JC000992.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., X. Zeng, V. Misra, and A. Beljaars, 2008: Integration of a prognostic sea surface skin temperature scheme into weather and climate models. J. Geophys. Res., 113, D21117, doi:10.1029/2008JD010607.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189.

    • Search Google Scholar
    • Export Citation
  • Casey, K. S., T. B. Brandon, P. Cornillon, and R. Evans, 2010: The past, present, and future of the AVHRR Pathfinder SST program. Oceanography from Space: Revisited, V. Barale, J. F. R. Gower, and L. Alberotanza, Eds., Springer, 323–341.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., 1993: A comparison of airborne eddy correlation and bulk aerodynamic methods for ocean-air turbulent fluxes during cold-air outbreaks. Bound.-Layer Meteor., 64, 75100.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., R. M. Atlas, C.-L. Shie, and J. Ardizzone, 1995: Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon. Wea. Rev., 123, 24052425.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., C.-L. Shie, R. M. Atlas, and J. Ardizzone, 1997: Air–sea fluxes retrieved from Special Sensor Microwave Imager data. J. Geophys. Res., 102, 12 70512 726.

    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 32563273.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., 1970: Observational studies in the atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 96, 91114.

  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409424.

  • da Silva, A., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372.

  • ECMWF, 2007: Part VII: ECMWF wave model. IFS Documentation Cy31r1, 56 pp. [Available online at http://www.ecmwf.int/research/ifsdocs/CY31r1/WAVES/IFSPart7.pdf.]

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515.

  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jets and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and H. A. R. de Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., and G. A. Wick, 2010: Near-surface air temperature retrieval derived from AMSU-A and sea surface temperature observations. J. Atmos. Oceanic Technol., 27, 17691776.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., G. A. Wick, and J. J. Bates, 2006: Near-surface retrieval of air temperature and specific humidity using multisensory microwave satellite observations. J. Geophys. Res., 111, D10306, doi:10.1029/2005JD006431.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12, 28562880.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91112.

  • Krasnopolsky, V. M., L. C. Breaker, and W. H. Gemmil, 1995: A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the Special Sensor Microwave Imager. J. Geophys. Res., 100, 11 03311 045.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., N. Iwasaka, S. Kizu, M. Konda, and K. Kutsuwada, 2002: Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO). J. Oceanogr., 58, 213225.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16, 670678.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., A. Zhang, and J. Bishop, 1994: Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. J. Geophys. Res., 99, 12 62312 638.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H. L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp. [Available online at http://www.nws.noaa.gov/om/tpb/484.pdf.]

    • Search Google Scholar
    • Export Citation
  • Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor., 6, 203204.

  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 40 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html#1990.]

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley and Sons, 397 pp.

    • Search Google Scholar
    • Export Citation
  • Pedreros, R., G. Dardier, H. Dupuis, H. C. Graber, W. M. Drennan, A. Weill, C. Guérin, and P. Nacass, 2003: Momentum and heat fluxes via the eddy correlation method on the R/V L’Atalante and an ASIS buoy. J. Geophys. Res., 108, 3339, doi:10.1029/2002JC001449.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Powell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2006: Met Office - GISST/MOHMATN4/MOHSST6 - Global ice coverage and SST (1856-2006). [Available online at http://badc.nerc.ac.uk/data/gisst.]

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7, 929948.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. R., and Coauthors, 2007: The GEOS-5 Data Assimilation System - Documentation on versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech Rep. NASA/TM-2007-104606, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. R., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. B., C. A. Clayson, F. R. Robertson, and D. L. Jackson, 2010: Predicting near-surface atmospheric variables from Special Sensor Microwave/Imager using neural networks with a first-guess approach. J. Geophys. Res., 115, D19113, doi:10.1029/2009JD013099.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217.

    • Search Google Scholar
    • Export Citation
  • Rosenfield, J. E., M. R. Schoeberl, and M. A. Geller, 1987: A computation of the stratospheric diabatic circulation using an accurate radiative transfer model. J. Atmos. Sci., 44, 859876.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schlüssel, P., L. Schanz, and G. Englisch, 1995: Retrieval of latent heat flux and longwave irradiance at the sea surface from SSM/I and AVHRR measurements. Adv. Space Res., 16, 107116.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., P. Schlüssel, and H. Grassl, 1993: Water vapor in the atmospheric boundary layer over oceans from SSM/I measurements. Int. J. Remote Sens., 14, 27732789.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., 2010: Science background for the reprocessing and Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2b) data set for global water and energy cycle research. Goddard Earth Sciences Data and Information Services Center, 18 pp. [Available online at http://disc.sci.gsfc.nasa.gov/measures/documentation/Science-of-the-data.pdf.]

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., and K. Hilburn, 2011: A newly revised satellite-based global air–sea surface turbulent fluxes dataset and its dependence on the SSM/I brightness temperature. Proc. 2011 IEEE IGARSS, Vancouver, BC, Canada, IEEE, 4 pp.

    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., and Coauthors, 2009: A note on reviving the Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) dataset. Adv. Atmos. Sci., 26, 10711080.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14, 40624072.

    • Search Google Scholar
    • Export Citation
  • Suarez, M., and Coauthors, 2008: File specification for MERRA products, version 2.1. NASA GMAO Rep., 96 pp. [Available online at http://gmao.gsfc.nasa.gov/research/merra/MERRA_FileSpec_DRAFT_09_02_2008.pdf.]

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud studies with mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wang, W., and M. J. McPhaden, 2001: What is the mean seasonal cycle of surface heat flux in the equatorial Pacific? J. Geophys. Res., 106, 837857.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990.

    • Search Google Scholar
    • Export Citation
  • Wells, N., and S. King-Hele, 1990: Parameterization of tropical ocean heat flux. Quart. J. Roy. Meteor. Soc., 116, 12131224.

  • Wentz, F. J., 1997: A well calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102, 87038718.

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235.

  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25, 823842.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 26282644.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 19311953.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1224 347 31
PDF Downloads 542 133 9