A Model of Atlantic Heat Content and Sea Level Change in Response to Thermohaline Forcing

Xiaoming Zhai Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Xiaoming Zhai in
Current site
Google Scholar
PubMed
Close
,
Helen L. Johnson Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Search for other papers by Helen L. Johnson in
Current site
Google Scholar
PubMed
Close
, and
David P. Marshall Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by David P. Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The response of ocean heat content in the Atlantic to variability in the meridional overturning circulation (MOC) at high latitudes is investigated using a reduced-gravity model and the Massachusetts Institute of Technology (MIT) general circulation model (MITgcm). Consistent with theoretical predictions, the zonal-mean heat content anomalies are confined to low latitudes when the high-latitude MOC changes rapidly, but extends to mid- and high latitudes when the high-latitude MOC varies on decadal or multidecadal time scales. This low-pass-filtering effect of the mid- and high latitudes on zonal-mean heat content anomalies, termed here the “Rossby buffer,” is shown to be associated with the ratio of Rossby wave basin-crossing time to the forcing period at high northern latitudes. Experiments using the MITgcm also reveal the importance of advective spreading of cold water in the deep ocean, which is absent in the reduced-gravity model. Implications for monitoring ocean heat content and sea level changes are discussed in the context of both models. It is found that observing global sea level variability and sea level rise using tide gauges can substantially overestimate the global-mean values.

Corresponding author address: Xiaoming Zhai, Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom. E-mail: zhai@atm.ox.ac.uk

Abstract

The response of ocean heat content in the Atlantic to variability in the meridional overturning circulation (MOC) at high latitudes is investigated using a reduced-gravity model and the Massachusetts Institute of Technology (MIT) general circulation model (MITgcm). Consistent with theoretical predictions, the zonal-mean heat content anomalies are confined to low latitudes when the high-latitude MOC changes rapidly, but extends to mid- and high latitudes when the high-latitude MOC varies on decadal or multidecadal time scales. This low-pass-filtering effect of the mid- and high latitudes on zonal-mean heat content anomalies, termed here the “Rossby buffer,” is shown to be associated with the ratio of Rossby wave basin-crossing time to the forcing period at high northern latitudes. Experiments using the MITgcm also reveal the importance of advective spreading of cold water in the deep ocean, which is absent in the reduced-gravity model. Implications for monitoring ocean heat content and sea level changes are discussed in the context of both models. It is found that observing global sea level variability and sea level rise using tide gauges can substantially overestimate the global-mean values.

Corresponding author address: Xiaoming Zhai, Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom. E-mail: zhai@atm.ox.ac.uk
Save
  • Bingham, R. J., and C. W. Hughes, 2009: Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys. Res. Lett., 36, L02603, doi:10.1029/2008GL036215.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., F. G. Komro, S. Manabe, and M. J. Spelmann, 1982: Transient climate response to increasing atmospheric carbon dioxide. Science, 215, 5658.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., A. Cazenave, and C. Le Provost, 2001: Sea level rise during past 40 years determined from satellite and in situ observations. Science, 294, 840842.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and S. Louazel, 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 30203029.

  • Cessi, P., K. Bryan, and R. Zhang, 2004: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean Basins. Geophys. Res. Lett., 31, L04302, doi:10.1029/2003GL019091.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938.

    • Search Google Scholar
    • Export Citation
  • Czeschel, L., D. P. Marshall, and H. L. Johnson, 2010: Oscillatory sensitivity of Atlantic overturning to high-latitude forcing. Geophys. Res. Lett., 37, L10601, doi:10.1029/2010GL043177.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676.

    • Search Google Scholar
    • Export Citation
  • Deshayes, J., and C. Frankignoul, 2005: Spectral characteristics of the response of the meridional overturning circulation to deep-water formation. J. Phys. Oceanogr., 35, 18131825.

    • Search Google Scholar
    • Export Citation
  • Dong, B. W., and R. T. Sutton, 2002a: Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation. Geophys. Res. Lett., 29, 1728, doi:10.1029/2002GL015229.

    • Search Google Scholar
    • Export Citation
  • Dong, B. W., and R. T. Sutton, 2002b: Variability in North Atlantic heat content and heat transport in a coupled ocean-atmosphere GCM. Climate Dyn., 19, 485497.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., C. W. Böing, and P. Herrmann, 1994: Response of circulation and heat transport in the North Atlantic to changes in the thermohaline forcing in northern latitudes: A model study. J. Phys. Oceanogr., 24, 23062320.

    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., and H. A. Dijkstra, 2009: Coherent multidecadal variability in North Atlantic sea level. Geophys. Res. Lett., 36, L15604, doi:10.1029/GL2009GL039455.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546.

    • Search Google Scholar
    • Export Citation
  • Goodman, P. J., 2001: Thermohaline adjustment and advection in an OGCM. J. Phys. Oceanogr., 31, 14771497.

  • Greatbatch, R. J., and K. A. Peterson, 1996: Interdecadal variability and oceanic thermohaline adjustment. J. Geophys. Res., 101, 20 46720 482.

    • Search Google Scholar
    • Export Citation
  • Hsieh, W. W., and K. Bryan, 1996: Redistribution of sea level rise associated with enhanced greenhouse warming: A simple model study. Climate Dyn., 12, 535544.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., M. A. Cane, N. Naik, and P. Goodman, 2000: Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett., 27, 759762.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., V. B. Zalesny, and M. R. Drinkwater, 2004: Can equatorial ocean quickly respond to Antarctic sea ice/salinity anomalies? Geophys. Res. Lett., 31, L15310, doi:10.1029/2004GL020472.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002a: Localization of abrupt change in the North Atlantic thermohaline circulation. Geophys. Res. Lett., 29, 1083, doi:10.1029/2001GL014140.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002b: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34, 17021722.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17, 22942317.

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1995–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., S. Leadbetter, R. G. Williams, V. Roussenov, M. S. C. Reed, and N. J. Moore, 2008: The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science, 319, 800803.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382, 436439.

  • Primeau, F., 2002: Long Rossby wave basin-crossing time and the resonance of low-frequency basin modes. J. Phys. Oceanogr., 32, 26522665.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and C. Wunsch, 1984: Apparent changes in the climate state of the deep North Atlantic Ocean. Nature, 307, 447450.

  • Stommel, H., 1979: Determination of watermass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76, 30513055.

    • Search Google Scholar
    • Export Citation
  • Yang, J., 1999: A linkage between decadal climate variations in the Labrador Sea and the tropical Atlantic Ocean. Geophys. Res. Lett., 26, 10231026.

    • Search Google Scholar
    • Export Citation
  • Yin, J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci., 2, 262266.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 599 419 191
PDF Downloads 194 73 9