Radiative Fluxes at Barrow, Alaska: A Satellite View

Xiaolei Niu Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Xiaolei Niu in
Current site
Google Scholar
PubMed
Close
and
Rachel T. Pinker Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel T. Pinker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite estimates of surface shortwave radiation (SWR) at high latitudes agree less with ground observations than at other locations; moreover, ground observations at such latitudes are scarce. The comprehensive observations of radiative fluxes made since 1977 by the Department of Energy Atmospheric Radiation Measurement (ARM) Program at the Barrow North Slope of Alaska (NSA) site are unique. They provide an opportunity to revisit accuracy estimates of remote sensing products at these latitudes, which are problematic because the melting of snow/ice and lower solar elevation make the satellite retrievals more difficult.

A newly developed inference scheme for deriving SWR from the Moderate Resolution Imaging Spectroradiometer (MODIS; Terra and Aqua) that utilizes updated information on surface properties over snow and sea ice will be evaluated against these ground measurements and compared with other satellite and model products. Results show that the MODIS-based estimates are in good agreement with observations, with a bias of −5.3 W m−2 (−4% of mean observations) for the downward SWR, a bias of −5.3 W m−2 (−7%) for upward SWR, a bias of 1 (1%) for net SWR, and a bias of −0.001 (0%) for surface albedo. As such, the MODIS estimates of SWR can be useful for numerical model evaluations and for estimating the energy budgets at high latitudes.

Corresponding author address: Rachel T. Pinker, Department of Atmospheric and Oceanic Science, CSS Building, University of Maryland, College Park, College Park, MD 20742. E-mail: pinker@atmos.umd.edu

This article is included in the CLIVAR/SeaFlux High Latitude Surface Fluxes special collection.

Abstract

Satellite estimates of surface shortwave radiation (SWR) at high latitudes agree less with ground observations than at other locations; moreover, ground observations at such latitudes are scarce. The comprehensive observations of radiative fluxes made since 1977 by the Department of Energy Atmospheric Radiation Measurement (ARM) Program at the Barrow North Slope of Alaska (NSA) site are unique. They provide an opportunity to revisit accuracy estimates of remote sensing products at these latitudes, which are problematic because the melting of snow/ice and lower solar elevation make the satellite retrievals more difficult.

A newly developed inference scheme for deriving SWR from the Moderate Resolution Imaging Spectroradiometer (MODIS; Terra and Aqua) that utilizes updated information on surface properties over snow and sea ice will be evaluated against these ground measurements and compared with other satellite and model products. Results show that the MODIS-based estimates are in good agreement with observations, with a bias of −5.3 W m−2 (−4% of mean observations) for the downward SWR, a bias of −5.3 W m−2 (−7%) for upward SWR, a bias of 1 (1%) for net SWR, and a bias of −0.001 (0%) for surface albedo. As such, the MODIS estimates of SWR can be useful for numerical model evaluations and for estimating the energy budgets at high latitudes.

Corresponding author address: Rachel T. Pinker, Department of Atmospheric and Oceanic Science, CSS Building, University of Maryland, College Park, College Park, MD 20742. E-mail: pinker@atmos.umd.edu

This article is included in the CLIVAR/SeaFlux High Latitude Surface Fluxes special collection.

Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The atmospheric radiation measurement program. Phys. Today, 56, 3844.

  • Belchansky, G. I., D. C. Douglas, and N. G. Platonov, 2004: Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001. J. Climate, 17, 6780.

    • Search Google Scholar
    • Export Citation
  • Bernhard, G., C. R. Booth, J. C. Ehramjian, R. Stone, and E. G. Dutton, 2007: Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. J. Geophys. Res., 112, D09101, doi:10.1029/2006JD007865.

    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., A. H. Lynch, J. J. Cassano, and M. R. Koslow, 2006: Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. Climate Res., 30, 8397.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 2008: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.]

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 529.

  • Dingman, S. L., R. G. Barry, G. Weller, C. Benson, E. F. LeDrew, and C. W. Goodwin, 1980: Climate, snow cover, microclimate, and hydrology. An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska, J. Brown et al., Eds., Institute of Ecology, 30–65.

    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, K. Crosby, C. N. Long, R. S. Stone, and M. D. Shupe, 2010: A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res., 115, D17212, doi:10.1029/2009JD013489.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, and V. V. Salomonson, 2006: MODIS/Terra Snow Cover Monthly L3 Global 0.05deg CMG, version 5. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/mod10cmv5.html.]

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L. M., P. W. Stackhouse Jr., B. A. Wielicki, T. Zhang, and S. R. Wilson, 2009: Surface insolation trends from satellite and ground measurements: Comparisons and challenges. J. Geophys. Res., 114, D00D20, doi:10.10129/2008JD011004.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72, 251298.

    • Search Google Scholar
    • Export Citation
  • Hodges, G. B., and J. J. Michalsky, 2011: Multifilter rotating shadowband radiometer, multifilter radiometer, and normal incidence multifilter radiometer handbook. ARM Climate Research Facility Rep. DOE/SC-ARM/TR-059, 13 pp.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Key, J., 2001: The Cloud and Surface Parameter Retrieval (CASPR) system for polar AVHRR data user’s guide. Space Science and Engineering Center, University of Wisconsin—Madison, 62 pp.

    • Search Google Scholar
    • Export Citation
  • Key, J., and A. J. Schweiger, 1998: Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput. Geosci., 24, 443451.

  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 227.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and R. T. Pinker, 2008: Radiative fluxes from satellites: Focus on aerosols. J. Geophys. Res., 113, D08208, doi:10.1029/2007JD008736.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, W. B. Rossow, J. R. Key, and X. Wang, 2005: Comparison of surface radiative flux data sets over the Arctic Ocean. J. Geophys. Res., 110, C02015, doi:10.1029/2004JC002381.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and P. E. Church, 1973: Radiation climate of Barrow, Alaska: 1962–1966. J. Appl. Meteor., 12, 620628.

  • Moody, E. G., M. D. King, C. B. Schaaf, D. K. Hall, and S. Platnick, 2007: North Hemisphere five-year average (2000–2004) spectral albedos of surface in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sens. Environ., 111, 337345.

    • Search Google Scholar
    • Export Citation
  • Niu, X., R. T. Pinker, and M. F. Cronin, 2010: Radiative fluxes at high latitudes. Geophys. Res. Lett., 37, L20811, doi:10.1029/2010GL044606.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and Coauthors, 1999: Year on ice gives climate insights. Eos, Trans. Amer. Geophys. Union, 80 (41), 481, 485486.

  • Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., H. Wang, and S. A. Grodsky, 2009: How good are ocean buoy observations of radiative fluxes? Geophys. Res. Lett., 36, L10811, doi:10.1029/2009GL037840.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 1998: Status of and outlook for large-scale modeling of atmosphere–ice–ocean interactions in the Arctic. Bull. Amer. Meteor. Soc., 79, 197219.

    • Search Google Scholar
    • Export Citation
  • Ray, P., 1885: Report of the international polar expedition to point Barrow, Alaska. U.S. Government Printing Office, 686 pp.

  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. World Meteorological Organization Tech. Doc. WMO/TD-737, 115 pp.

    • Search Google Scholar
    • Export Citation
  • Stamnes, L., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak, 1999: Review of science issues, development strategy, and status for the ARM North Slope of Alaska–Adjacent Arctic Ocean climate research site. J. Climate, 12, 4663.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790.

    • Search Google Scholar
    • Export Citation
  • Stone, R. S., 1997: Variations in western Arctic temperatures in response to cloud radiative and synoptic-scale influences. J. Geophys. Res., 102, 21 76921 776.

    • Search Google Scholar
    • Export Citation
  • Stone, R. S., E. G. Dutton, J. M. Harris, and D. Longenecker, 2002: Earlier spring snowmelt in northern Alaska as an indicator of climate change. J. Geophys. Res., 107, 4089, doi:10.1029/2000JD000286.

    • Search Google Scholar
    • Export Citation
  • Stone, R. S., D. C. Douglas, G. I. Belchansky, S. D. Drobot, and J. Harris, 2005: Cause and effect of variations in western Arctic snow and sea ice cover. Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., 8.3. [Available online at http://ams.confex.com/ams/pdfpapers/84856.pdf.]

    • Search Google Scholar
    • Export Citation
  • Sturm, M., 2000: Arctic winter and snow cover: Five distinct stages with implications for living things. Eos, Trans. Amer. Geophys. Union, 81, F232.

    • Search Google Scholar
    • Export Citation
  • Su, H., E. F. Wood, H. Wang, and R. T. Pinker, 2008: Spatial and temporal scaling behavior of surface shortwave downward radiation based on MODIS and in situ measurements. IEEE Geosci. Remote Sens. Lett., 5, 542546.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and D. H. Portis, 2009: Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. J. Climate, 22, 23162334.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. T. Pinker, 2009: Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res., 114, D20201, doi:10.1029/2008JD010442.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299, 17251728.

  • Wang, X., and J. Key, 2005a: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25582574.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. Key, 2005b: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part II: Recent trends. J. Climate, 18, 25752593.

    • Search Google Scholar
    • Export Citation
  • Yannuzzi, V. T., E. E. Clothiaux, J. Y. Harrington, and J. Verlinde, 2009: Statistical analysis of forecasting models across the North Slope of Alaska during the Mixed-Phase Arctic Clouds Experiment. Wea. Forecasting, 24, 16441663.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., T. Scambos, T. Haran, L. D. Hinzman, R. G. Barry, and D. L. Kane, 2003: Ground-based and satellite-derived measurements of surface albedo on the North Slope of Alaska. J. Hydrometeor., 4, 7791.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 509 104 3
PDF Downloads 165 60 3