The Response of the Tropospheric Circulation to Water Vapor–Like Forcings in the Stratosphere

Neil F. Tandon Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Neil F. Tandon in
Current site
Google Scholar
PubMed
Close
,
Lorenzo M. Polvani Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
, and
Sean M. Davis Chemical Sciences Division, NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado

Search for other papers by Sean M. Davis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An idealized, dry general circulation model is used to examine the response of the tropospheric circulation to thermal forcings that mimic changes in stratospheric water vapor (SWV). It is found that SWV-like cooling in the stratosphere produces a poleward-shifted, strengthened jet and an expanded, weakened Hadley cell. This response is shown to be almost entirely driven by cooling located in the extratropical lower stratosphere; when cooling is limited to the tropical stratosphere, it generates a much weaker and qualitatively opposite response. It is demonstrated that these circulation changes arise independently of any changes in tropopause height, are insensitive to the detailed structure of the forcing function, and are robust to model resolution. The responses are quantitatively of the same order as those due to well-mixed greenhouse gases, suggesting a potentially significant contribution of SWV to past and future changes in the tropospheric circulation.

Corresponding author address: Neil F. Tandon, Columbia University, 500 W. 120 St., Room 200 Mudd, New York, NY 10027. E-mail: nft2104@columbia.edu

Abstract

An idealized, dry general circulation model is used to examine the response of the tropospheric circulation to thermal forcings that mimic changes in stratospheric water vapor (SWV). It is found that SWV-like cooling in the stratosphere produces a poleward-shifted, strengthened jet and an expanded, weakened Hadley cell. This response is shown to be almost entirely driven by cooling located in the extratropical lower stratosphere; when cooling is limited to the tropical stratosphere, it generates a much weaker and qualitatively opposite response. It is demonstrated that these circulation changes arise independently of any changes in tropopause height, are insensitive to the detailed structure of the forcing function, and are robust to model resolution. The responses are quantitatively of the same order as those due to well-mixed greenhouse gases, suggesting a potentially significant contribution of SWV to past and future changes in the tropospheric circulation.

Corresponding author address: Neil F. Tandon, Columbia University, 500 W. 120 St., Room 200 Mudd, New York, NY 10027. E-mail: nft2104@columbia.edu
Save
  • Bohren, C. F., and B. A. Albrecht, 1998: Atmospheric Thermodynamics. Oxford University Press, 402 pp.

  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. D., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 36723685.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655, doi:10.1002/qj.49710142918.

    • Search Google Scholar
    • Export Citation
  • Hurst, D. F., S. J. Oltmans, H. Vömel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res., 116, D02306, doi:10.1029/2010JD015065.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725.

  • Joshi, M. M., A. J. Charlton, and A. A. Scaife, 2006: On the influence of stratospheric water vapor changes on the tropospheric circulation. Geophys. Res. Lett., 33, L09806, doi:10.1029/2006GL025983.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., K. P. Shine, and M. M. Joshi, 2011: The temperature response to stratospheric water vapour changes. Quart. J. Roy. Meteor. Soc., 137, 10701082, doi:10.1002/qj.822.

    • Search Google Scholar
    • Export Citation
  • Oinas, V., A. A. Lacis, D. Rind, D. T. Shindell, and J. E. Hansen, 2001: Radiative cooling by stratospheric water vapor: Big differences in GCM results. Geophys. Res. Lett., 28, 27912794, doi:10.1029/2001GL013137.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. M. D. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and Coauthors, 2001: Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28, 11951198, doi:10.1029/2000GL012502.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., J. D. Haigh, and R. Toumi, 2001: Radiative forcing due to trends in stratospheric water vapour. Geophys. Res. Lett., 28, 179182, doi:10.1029/2000GL011846.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. J. Miller, and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 1008 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 19541961.

  • World Meteorological Organization, 1957: Meteorology–A three-dimensional science. WMO Bull., 4, 134138.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1260 841 309
PDF Downloads 401 84 11