Evaluation of WRF Parameterizations for Climate Studies over Southern Spain Using a Multistep Regionalization

Daniel Argüeso Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain

Search for other papers by Daniel Argüeso in
Current site
Google Scholar
PubMed
Close
,
José M. Hidalgo-Muñoz Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain

Search for other papers by José M. Hidalgo-Muñoz in
Current site
Google Scholar
PubMed
Close
,
Sonia R. Gámiz-Fortis Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain

Search for other papers by Sonia R. Gámiz-Fortis in
Current site
Google Scholar
PubMed
Close
,
María Jesús Esteban-Parra Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain

Search for other papers by María Jesús Esteban-Parra in
Current site
Google Scholar
PubMed
Close
,
Jimy Dudhia National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
, and
Yolanda Castro-Díez Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain

Search for other papers by Yolanda Castro-Díez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper evaluates the Weather Research and Forecasting model (WRF) sensitivity to eight different combinations of cumulus, microphysics, and planetary boundary layer (PBL) parameterization schemes over a topographically complex region in southern Spain (Andalusia) for the period 1990–99. The WRF configuration consisted of a 10-km-resolution domain nested in a coarser domain driven by 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data, with spectral nudging above the PBL employed over the latter domain. The model outputs have been compared at different time scales with an observational dataset that comprises 438 rain gauges and 152 temperature stations with records of both daily maximum and minimum temperatures. To reduce the “representation error,” the validation with observations has been performed using a multistep regionalization that distinguishes five precipitation regions and four temperature regions.

The analysis proves that both cumulus and PBL schemes have a crucial impact on the description of precipitation in Andalusia, whereas no noticeable differences between microphysics options were appreciated. Temperature is described similarly by all the configurations, except for the PBL choice affecting minimum values.

WRF provides a definite improvement over ERA-40 in the climate description in terms of frequency, spatial distribution, and intensity of extreme events. It also captures more accurately the annual cycle and reduces the biases and the RMSE for monthly precipitation, whereas only a minor enhancement of these features was obtained for monthly-mean maximum and minimum temperatures. The results indicate that WRF is able to correctly reproduce Andalusian climate and produces useful added-value information for climate studies.

Corresponding author address: Daniel Argüeso, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n C.P. 18071 Granada, Spain. E-mail: dab@ugr.es

Abstract

This paper evaluates the Weather Research and Forecasting model (WRF) sensitivity to eight different combinations of cumulus, microphysics, and planetary boundary layer (PBL) parameterization schemes over a topographically complex region in southern Spain (Andalusia) for the period 1990–99. The WRF configuration consisted of a 10-km-resolution domain nested in a coarser domain driven by 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data, with spectral nudging above the PBL employed over the latter domain. The model outputs have been compared at different time scales with an observational dataset that comprises 438 rain gauges and 152 temperature stations with records of both daily maximum and minimum temperatures. To reduce the “representation error,” the validation with observations has been performed using a multistep regionalization that distinguishes five precipitation regions and four temperature regions.

The analysis proves that both cumulus and PBL schemes have a crucial impact on the description of precipitation in Andalusia, whereas no noticeable differences between microphysics options were appreciated. Temperature is described similarly by all the configurations, except for the PBL choice affecting minimum values.

WRF provides a definite improvement over ERA-40 in the climate description in terms of frequency, spatial distribution, and intensity of extreme events. It also captures more accurately the annual cycle and reduces the biases and the RMSE for monthly precipitation, whereas only a minor enhancement of these features was obtained for monthly-mean maximum and minimum temperatures. The results indicate that WRF is able to correctly reproduce Andalusian climate and produces useful added-value information for climate studies.

Corresponding author address: Daniel Argüeso, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n C.P. 18071 Granada, Spain. E-mail: dab@ugr.es
Save
  • Amengual, A., R. Romero, V. Homar, C. Ramis, and S. Alonso, 2007: Impact of the lateral boundary conditions resolution on dynamical downscaling of precipitation in mediterranean Spain. Climate Dyn., 29, 487499.

    • Search Google Scholar
    • Export Citation
  • Bärring, L., 1987: Spatial patterns of daily rainfall in central Kenya–Application of principal component analysis, common factor analysis and spatial correlation. Int. J. Climatol., 7, 267289.

    • Search Google Scholar
    • Export Citation
  • Bell, J., L. Sloan, and M. Snyder, 2004: Regional changes in extreme climatic events: A future climate scenario. J. Climate, 17, 8187.

    • Search Google Scholar
    • Export Citation
  • Borge, R., V. Alexandrov, J. José del Vas, J. Lumbreras, and E. Rodríguez, 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ., 42, 85608574.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and D. J. Karoly, 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteor. Climatol., 48, 21522159.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M., J. Miller, and A. DeGaetano, 1996: Definition of climate regions in the northern plains using an objective cluster modification technique. J. Climate, 9, 130146.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521.

    • Search Google Scholar
    • Export Citation
  • Calinski, R. B., and J. Harabasz, 1974: A dendrite method for cluster analysis. Commun. Stat., 3, 127.

  • Catalano, F., and A. Cenedese, 2010: High-resolution numerical modeling of thermally driven slope winds in a valley with strong capping. J. Appl. Meteor. Climatol., 49, 18591880.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., and C.-H. Moeng, 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor., 137, 4975.

    • Search Google Scholar
    • Export Citation
  • Christensen, O., M. Gaertner, J. Prego, and J. Polcher, 2001: Internal variability of regional climate models. Climate Dyn., 17, 875887.

    • Search Google Scholar
    • Export Citation
  • Deb, S., T. Srivastava, and C. Kishtawal, 2008: The WRF model performance for the simulation of heavy precipitating events over Ahmedabad during August 2006. J. Earth Syst. Sci., 117, 589602.

    • Search Google Scholar
    • Export Citation
  • Denis, B., R. Laprise, and D. Caya, 2003: Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Climate Dyn., 20, 107126.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., R. Errico, F. Giorgi, and G. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383422.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and M. F. McCabe, 2010: Regional climate simulation over Australia’s Murray-Darling Basin: A multitemporal assessment. J. Geophys. Res., 115, D14114, doi:10.1029/2010JD013816.

    • Search Google Scholar
    • Export Citation
  • Fernández, J., 2004: Statistical and dynamical downscaling models applied to winter precipitation on the Cantabrian coast. Ph.D. thesis, University of the Basque Country, 124 pp.

    • Search Google Scholar
    • Export Citation
  • Fernández, J., J. P. Montávez, J. Sáenz, J. F. González-Rouco, and E. Zorita, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. J. Geophys. Res., 112, D04101, doi:10.1029/2005JD006649.

    • Search Google Scholar
    • Export Citation
  • Fita, L., J. Fernández, and M. García-Díez, 2010: CLWRF: WRF modifications for regional climate simulation under future scenarios. Preprints, 11th WRF Users’ Event, Boulder, CO, NCAR, P-26.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., 1997: Consensus clustering of U.S. temperature and precipitation data. J. Climate, 10, 14051427.

  • Fovell, R., and M. Fovell, 1993: Climate zones of the conterminous United States defined using cluster analysis. J. Climate, 6, 21032135.

    • Search Google Scholar
    • Export Citation
  • Frei, C., J. H. Christensen, M. Déqué, D. Jacob, R. G. Jones, and P. L. Vidale, 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108, 4124, doi:10.1029/2002JD002287.

    • Search Google Scholar
    • Export Citation
  • Gallus, W., Jr., and J. Bresch, 2006: Comparison of impacts of WRF dynamic core, physics package, and initial conditions on warm season rainfall forecasts. Mon. Wea. Rev., 134, 26322641.

    • Search Google Scholar
    • Export Citation
  • Gerstengarbe, F.-W., P. C. Werner, and K. Fraedrich, 1999: Applying non-hierarchical cluster analysis algorithms to climate classification: Some problems and their solution. Theor. Appl. Climatol., 64, 143150.

    • Search Google Scholar
    • Export Citation
  • Gillett, N., and D. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273.

  • Giorgi, F., 2006: Regional climate modeling: Status and perspectives. J. Phys. IV, 139, 101118.

  • Giorgi, F., and L. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 63356352.

    • Search Google Scholar
    • Export Citation
  • Göber, M., E. Zsótér, and D. Richardson, 2008: Could a perfect model ever satisfy a naïve forecaster? On grid box mean versus point verification. Meteor. Appl., 15, 359365.

    • Search Google Scholar
    • Export Citation
  • Gong, X., and M. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., L. Fita, J. Fernández, and J. M. Gutiérrez, 2010: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., K. S. S. Lim, J. H. Kim, J. O. J. Lim, and J. Dudhia, 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 6176.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. Gallus Jr., M. Segal, B. Shaw, and S. Koch, 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P., E. García-Bustamante, J. F. González-Rouco, F. Valero, J. Montávez, and J. Navarro, 2008: Surface wind regionalization in complex terrain. J. Appl. Meteor. Climatol., 47, 308325.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL spring program 2004. Wea. Forecasting, 21, 167181.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L., G. Tan, and J. Skindlov, 1987: An evaluation of three clustering procedures for use in synoptic climatological classification. J. Climate Appl. Meteor., 26, 717730.

    • Search Google Scholar
    • Export Citation
  • Köppen, W., 1923: Die Klimate der Erde, Grundriss der Klimakunde. De Greyter, 369 pp.

  • Kostopoulou, E., K. Tolika, I. Tegoulias, C. Giannakopoulos, S. Somot, C. Anagnostopoulou, and P. Maheras, 2009: Evaluation of a regional climate model using in situ temperature observations over the Balkan Peninsula. Tellus, 61A, 357370.

    • Search Google Scholar
    • Export Citation
  • Kwun, J. H., Y. K. Kim, J. W. Seo, J. H. Jeong, and S. H. You, 2009: Sensitivity of MM5 and WRF mesoscale model predictions of surface winds in a typhoon to planetary boundary layer parameterizations. Nat. Hazards, 51, 6377.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 36413666.

  • Laprise, R., and Coauthors, 2008: Challenging some tenets of regional climate modelling. Meteor. Atmos. Phys., 100, 322.

  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 8995.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2009: Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. J. Meteor. Soc. Japan, 87, 403421.

    • Search Google Scholar
    • Export Citation
  • Lund, R., and B. Li, 2009: Revisiting climate region definitions via clustering. J. Climate, 22, 17871800.

  • McGregor, J., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63, 105117.

  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Milligan, G., 1980: An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325342.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New, 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901-2000) and 16 scenarios (2001-2100). Tyndall Centre Working Paper 55, 25 pp.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., and P. Jones, 2004: Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961–1990. Climate Dyn., 23, 695715.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674.

    • Search Google Scholar
    • Export Citation
  • North, G., T. Bell, R. Cahalan, and F. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Osborn, T., 2004: Simulating the winter North Atlantic Oscillation: The roles of internal variability and greenhouse gas forcing. Climate Dyn., 22, 605623.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Radu, R., M. Déqué, and S. Somot, 2008: Spectral nudging in a spectral regional climate model. Tellus, 60A, 898910.

  • Reid, S., and R. Turner, 2001: Correlation of real and model wind speeds in different terrains. Wea. Forecasting, 16, 620627.

  • Richman, M., and P. Lamb, 1985: Climatic pattern analysis of three- and seven-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Climate Appl. Meteor., 24, 13251343.

    • Search Google Scholar
    • Export Citation
  • Rivington, M., D. Miller, K. Matthews, G. Russell, G. Bellocchi, and K. Buchan, 2007: Downscaling regional climate model estimates of daily precipitation, temperature and solar radiation data. Climate Res., 35, 181.

    • Search Google Scholar
    • Export Citation
  • Rivington, M., D. Miller, K. Matthews, G. Russell, G. Bellocchi, and K. Buchan, 2008: Evaluating regional climate model estimates against site-specific observed data in the UK. Climatic Change, 88, 157185.

    • Search Google Scholar
    • Export Citation
  • Romero, R., C. Ramis, J. Guijarro, and G. Sumner, 1999: Daily rainfall affinity areas in mediterranean Spain. Int. J. Climatol., 19, 557578.

    • Search Google Scholar
    • Export Citation
  • Sertel, E., A. Robock, and C. Ormeci, 2009: Impacts of land cover data quality on regional climate simulations. Int. J. Climatol., 30, 19421953.

    • Search Google Scholar
    • Export Citation
  • Seth, A., and F. Giorgi, 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11, 26982712.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C., 1931: The climates of North America: According to a new classification. Geogr. Rev., 21, 633655.

  • Unal, Y., T. Kindap, and M. Karaca, 2003: Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol., 23, 10451055.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., V. Duliere, P. W. Mote, and E. P. Salathe, 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J. Climate, 22, 55115526.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2103 601 49
PDF Downloads 825 139 12