Sea Level Expression of Intrinsic and Forced Ocean Variabilities at Interannual Time Scales

Thierry Penduff Laboratoire des Ecoulements Géophysiques et Industriels, UMR CNRS 5519, Université de Grenoble, Grenoble, France
Earth, Ocean and Atmospheric Science Department, The Florida State University, Tallahassee, Florida

Search for other papers by Thierry Penduff in
Current site
Google Scholar
PubMed
Close
,
Mélanie Juza Laboratoire des Ecoulements Géophysiques et Industriels, UMR CNRS 5519, Université de Grenoble, Grenoble, France

Search for other papers by Mélanie Juza in
Current site
Google Scholar
PubMed
Close
,
Bernard Barnier Laboratoire des Ecoulements Géophysiques et Industriels, UMR CNRS 5519, Université de Grenoble, Grenoble, France

Search for other papers by Bernard Barnier in
Current site
Google Scholar
PubMed
Close
,
Jan Zika Laboratoire des Ecoulements Géophysiques et Industriels, UMR CNRS 5519, Université de Grenoble, Grenoble, France

Search for other papers by Jan Zika in
Current site
Google Scholar
PubMed
Close
,
William K. Dewar Earth, Ocean and Atmospheric Science Department, The Florida State University, Tallahassee, Florida

Search for other papers by William K. Dewar in
Current site
Google Scholar
PubMed
Close
,
Anne-Marie Treguier Laboratoire de Physique des Océans, UMR CNRS 6523, IFREMER, UBO, Plouzané, France

Search for other papers by Anne-Marie Treguier in
Current site
Google Scholar
PubMed
Close
,
Jean-Marc Molines Laboratoire des Ecoulements Géophysiques et Industriels, UMR CNRS 5519, Université de Grenoble, Grenoble, France

Search for other papers by Jean-Marc Molines in
Current site
Google Scholar
PubMed
Close
, and
Nicole Audiffren Centre Informatique National de l’Enseignement Supérieur, Montpellier, France

Search for other papers by Nicole Audiffren in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper evaluates in a realistic context the local contributions of direct atmospheric forcing and intrinsic oceanic processes on interannual sea level anomalies (SLAs). A ¼° global ocean–sea ice general circulation model, driven over 47 yr by the full range of atmospheric time scales, is quantitatively assessed against altimetry and shown to reproduce most observed features of the interannual SLA variability from 1993 to 2004. Comparing this simulation with a second driven only by the climatological annual cycle reveals that the intrinsic part of the total interannual SLA variance exceeds 40% over half of the open-ocean area and exceeds 80% over one-fifth of it. This intrinsic contribution is particularly strong in eddy-active regions (more than 70%–80% in the Southern Ocean and western boundary current extensions) as predicted by idealized studies, as well as within the 20°–35° latitude bands. The atmosphere directly forces most of the interannual SLA variance at low latitudes and in most midlatitude eastern basins, in particular north of about 40°N in the Pacific. The interannual SLA variance is almost entirely due to intrinsic processes south of the Antarctic Circumpolar Current in the Indian Ocean sector, while half of this variance is forced by the atmosphere north of it. The same simulations were performed and analyzed at 2° resolution as well: switching to this laminar regime yields a comparable forced variability (large-scale distribution and magnitude) but almost suppresses the intrinsic variability. This likely explains why laminar ocean models largely underestimate the interannual SLA variance.

Corresponding author address: Thierry Penduff, LEGI-MEOM, BP53, 38041 Grenoble CEDEX 9, France. E-mail: thierry.penduff@legi.grenoble-inp.fr

Abstract

This paper evaluates in a realistic context the local contributions of direct atmospheric forcing and intrinsic oceanic processes on interannual sea level anomalies (SLAs). A ¼° global ocean–sea ice general circulation model, driven over 47 yr by the full range of atmospheric time scales, is quantitatively assessed against altimetry and shown to reproduce most observed features of the interannual SLA variability from 1993 to 2004. Comparing this simulation with a second driven only by the climatological annual cycle reveals that the intrinsic part of the total interannual SLA variance exceeds 40% over half of the open-ocean area and exceeds 80% over one-fifth of it. This intrinsic contribution is particularly strong in eddy-active regions (more than 70%–80% in the Southern Ocean and western boundary current extensions) as predicted by idealized studies, as well as within the 20°–35° latitude bands. The atmosphere directly forces most of the interannual SLA variance at low latitudes and in most midlatitude eastern basins, in particular north of about 40°N in the Pacific. The interannual SLA variance is almost entirely due to intrinsic processes south of the Antarctic Circumpolar Current in the Indian Ocean sector, while half of this variance is forced by the atmosphere north of it. The same simulations were performed and analyzed at 2° resolution as well: switching to this laminar regime yields a comparable forced variability (large-scale distribution and magnitude) but almost suppresses the intrinsic variability. This likely explains why laminar ocean models largely underestimate the interannual SLA variance.

Corresponding author address: Thierry Penduff, LEGI-MEOM, BP53, 38041 Grenoble CEDEX 9, France. E-mail: thierry.penduff@legi.grenoble-inp.fr
Save
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global circulation model at eddy-permitting resolution. Ocean Dyn., 56, 543567, doi:10.1007/s10236-006-0082-1.

    • Search Google Scholar
    • Export Citation
  • Béranger, K., B. Barnier, S. Gulev, and M. Crépon, 2006: Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dyn., 56, 104138.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., and J. C. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 19251949.

    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., W. Dewar, S. Kravtsov, and J. C. McWilliams, 2007: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37, 11031121.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. Böning, and J. Lutjeharms, 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489492.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2009: Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys. Res. Lett., 36, L02603, doi:10.1029/2008GL036215.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, T. Penduff, A.-M. Treguier, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., T. Huck, and A. Colin de Verdière, 2006: Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J. Phys. Oceanogr., 36, 17391750.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and S. Louazel, 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 30203029.

  • Chang, K.-I., M. Ghil, K. Ide, and C.-C. A. Lai, 2001: Transition to aperiodic variability in a wind-driven double-gyre circulation model. J. Phys. Oceanogr., 31, 12601286.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W., 1982: Asymptotic analysis of the Agulhas and Brazil Current systems. J. Phys. Oceanogr., 12, 361373.

  • Dewar, W., 2001: On ocean dynamics in midlatitude climate. J. Climate, 14, 43804397.

  • Dewar, W., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33, 10571082.

  • Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, doi:10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06601, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152726.

  • Hall, N., B. Barnier, T. Penduff, and J.-M. Molines, 2004: Interannual variation of Gulf Stream heat transport in a high resolution model forced by reanalysis data. Climate Dyn., 23, 341351.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and S. Drijfhout, 2000: A model study on internally generated variability in subtropical mode water formation. J. Geophys. Res., 105, 13 96513 979.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., and J. Blundell, 2006: Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr., 36, 16261645.

  • Hoyer, J. L., and D. Quadfasel, 2001: Detection of deep overflows with satellite altimetry. Geophys. Res. Lett., 28, 16111614.

  • Hurlburt, H. E., and P. J. Hogan, 2000: Impact of resolution on Gulf Stream model-data comparisons in basin-scale subtropical Atlantic Ocean models. Dyn. Atmos. Oceans, 32, 283330.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., F.-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764786.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., 1991: The meandering Gulf Stream as seen by the Geosat altimeter: Surface transport, position, and velocity variance from 73° to 46°W. J. Geophys. Res., 96, 16 71216 738.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and P. E. Isachsen, 2010: The linear models of the ACC. Prog. Oceanogr., 84, 139157.

  • Madec, G., and the NEMO Team, 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pôle de Modélisation 27.

  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res., 42, 641673.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838.

  • Penduff, T., B. Barnier, W. K. Dewar, and J. J. O’Brien, 2004: Dynamical response of the oceanic eddy field to the North Atlantic Oscillation: A model–data comparison. J. Phys. Oceanogr., 34, 26152629.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, L. Brodeau, G. C. Smith, B. Barnier, J.-M. Molines, A.-M. Treguier, and G. Madec, 2010: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6, 269284.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 289 pp.

  • Pierini, S., 2006: A Kuroshio Extension system model study: Decadal chaotic self-sustained oscillations. J. Phys. Oceanogr., 36, 16051625.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., and J. R. Dunn, 2007: Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett., 34, L13612, doi:10.1029/2007GL030392.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., C. W. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 271–302.

    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole in the tropical Indian Ocean. Nature, 401, 360363.

  • Sallée, J. B., K. Speer, and R. Morrow, 2008: Southern Ocean fronts and their variability to climate modes. J. Climate, 21, 30203039.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123.

  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37, 673688.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, K. Ido, and R. Temam, 2003: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions. J. Phys. Oceanogr., 33, 729752.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, and H. A. Dijkstra, 2005: Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. J. Mar. Res., 63, 931956.

    • Search Google Scholar
    • Export Citation
  • Smith, R., M. Maltrud, F. Bryan, and M. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at . J. Phys. Oceanogr., 30, 15321561.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., 2000: Tropical Pacific sea level variations (1948–98). J. Climate, 13, 27572769.

  • Spall, M., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part II: Low-frequency internal oscillations. J. Phys. Oceanogr., 26, 21692182.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377.

    • Search Google Scholar
    • Export Citation
  • Treguier, A.-M., S. Theetten, E. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757774.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Webb, D. J., and B. A. de Cuevas, 2003: The region of large sea surface height variability in the southeast Pacific Ocean. J. Phys. Oceanogr., 33, 10441056.

    • Search Google Scholar
    • Export Citation
  • Wirth, A., J. Willebrand, and F. Schott, 2002: Variability of the Great Whirl from observations and models. Deep-Sea Res. II, 49, 12791295.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671568.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1481 439 61
PDF Downloads 456 101 5