The Changing Cryosphere: Pan-Arctic Snow Trends (1979–2009)

Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
and
Christopher A. Hiemstra U.S. Army Cold Regions Research and Engineering Laboratory, Ft. Wainwright, Alaska

Search for other papers by Christopher A. Hiemstra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic snow presence, absence, properties, and water amount are key components of Earth’s changing climate system that incur far-reaching physical and biological ramifications. Recent dataset and modeling developments permit relatively high-resolution (10-km horizontal grid; 3-h time step) pan-Arctic snow estimates for 1979–2009. Using MicroMet and SnowModel in conjunction with land cover, topography, and 30 years of the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, a distributed snow-related dataset was created including air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent (SWE) depth, average snow density, snow sublimation, and rain-on-snow events. Regional variability is a dominant feature of the modeled snow-property trends. Both positive and negative regional trends are distributed throughout the pan-Arctic domain, featuring, for example, spatially distinct areas of increasing and decreasing SWE or snow season length. In spite of strong regional variability, the data clearly show a general snow decrease throughout the Arctic: maximum winter SWE has decreased, snow-cover onset is later, the snow-free date in spring is earlier, and snow-cover duration has decreased. The domain-averaged air temperature trend when snow was on the ground was 0.17°C decade−1 with minimum and maximum regional trends of −0.55° and 0.78°C decade−1, respectively. The trends for total number of snow days in a year averaged −2.49 days decade−1 with minimum and maximum regional trends of −17.21 and 7.19 days decade−1, respectively. The average trend for peak SWE in a snow season was −0.17 cm decade−1 with minimum and maximum regional trends of −2.50 and 5.70 cm decade−1, respectively.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. E-mail: liston@cira.colostate.edu

Abstract

Arctic snow presence, absence, properties, and water amount are key components of Earth’s changing climate system that incur far-reaching physical and biological ramifications. Recent dataset and modeling developments permit relatively high-resolution (10-km horizontal grid; 3-h time step) pan-Arctic snow estimates for 1979–2009. Using MicroMet and SnowModel in conjunction with land cover, topography, and 30 years of the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, a distributed snow-related dataset was created including air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent (SWE) depth, average snow density, snow sublimation, and rain-on-snow events. Regional variability is a dominant feature of the modeled snow-property trends. Both positive and negative regional trends are distributed throughout the pan-Arctic domain, featuring, for example, spatially distinct areas of increasing and decreasing SWE or snow season length. In spite of strong regional variability, the data clearly show a general snow decrease throughout the Arctic: maximum winter SWE has decreased, snow-cover onset is later, the snow-free date in spring is earlier, and snow-cover duration has decreased. The domain-averaged air temperature trend when snow was on the ground was 0.17°C decade−1 with minimum and maximum regional trends of −0.55° and 0.78°C decade−1, respectively. The trends for total number of snow days in a year averaged −2.49 days decade−1 with minimum and maximum regional trends of −17.21 and 7.19 days decade−1, respectively. The average trend for peak SWE in a snow season was −0.17 cm decade−1 with minimum and maximum regional trends of −2.50 and 5.70 cm decade−1, respectively.

Corresponding author address: Dr. Glen E. Liston, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. E-mail: liston@cira.colostate.edu
Save
  • Aanes, R., B.-E. Sæther, and N. A. Øritsland, 2000: Fluctuations of an introduced population of Svalbard reindeer: The effects of density dependence and climatic variation. Ecography, 23, 437443.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., A. F. Hamlet, and D. P. Lettenmaier, 2009: Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Processes, 23, 962972.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R. L., and M. J. Brodzik, 2001: Validation of passive microwave snow algorithms. Remote Sensing and Hydrology 2000, IAHS Publ. 267, M. Owe, K. Brubaker, J. Ritchie, and A. Rango, Eds., International Association of Hydrological Sciences, 87–92.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R. L., and M. J. Brodzik, 2007: Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent version 3. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0046.html.]

    • Search Google Scholar
    • Export Citation
  • Armstrong, R. L., M. J. Brodzik, K. Knowles, and M. Savoie, 2007: Global monthly EASE-Grid snow water equivalent climatology. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0271.html.]

    • Search Google Scholar
    • Export Citation
  • Bartlett, M. G., D. S. Chapman, and R. N. Harris, 2005: Snow effect on North American ground temperatures, 1950-2002. J. Geophys. Res., 110, F03008, doi:10.1029/2005JF000293.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and Coauthors, 2010: Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions, 14. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., and B. Kochtubajda, 2009: An assessment of present and future climate in the Mackenzie Delta and the near-shore Beaufort Sea region of Canada. Int. J. Climatol., 29, 17801795.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., 2008: NASA’s Modern Era Retrospective-analysis for Research and Applications: Integrating Earth Observations. Earthzine. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation reanalyses. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, in press.

  • Bowling, L. C., J. W. Pomeroy, and D. P. Lettenmaier, 2004: Parameterization of blowing-snow sublimation in a macroscale hydrology model. J. Hydrometeor., 5, 745762.

    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740.

  • Bromwich, D. H., Y.-H. Kuo, M. C. Serreze, J. E. Walsh, L. S. Bai, M. Barlage, K. M. Hines, and A. S. Slater, 2010: Arctic System Reanalysis: Call for community involvement. Eos, Trans. Amer. Geophys. Union, 91, 1314.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., 2000: Northern Hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 23392355.

  • Brown, R. D., and A. Frei, 2007: Comment on ‘‘Evaluation of surface albedo and snow cover in AR4 coupled models’’ by A. Roesch. J. Geophys. Res., 112, D22102, doi:10.1029/2006JD008339.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and P. W. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145.

  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., C. Derksen, and L. Wang, 2007: Assessment of spring snow cover duration variability over northern Canada from satellite datasets. Remote Sens. Environ., 111, 367381.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., C. Derksen, and L. Wang, 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967-2008. J. Geophys. Res., 115, D16111, doi:10.1029/2010JD013975.

    • Search Google Scholar
    • Export Citation
  • Bruland, O., G. E. Liston, J. Vonk, and A. Killingtveit, 2004: Modelling the snow distribution at two High-Arctic sites at Svalbard, Norway, and at a Sub-Arctic site in Central Norway. Nord. Hydrol., 35, 191208.

    • Search Google Scholar
    • Export Citation
  • Bunn, A. G., and S. J. Goetz, 2006: Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interactions, 10. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • CAVM Team, 2003: Circumpolar Arctic Vegetation Map. Scale 1:7,500,000, Conservation of Arctic Flora and Fauna (CAFF), Map 1, U.S. Fish and Wildlife Service, Anchorage, AK. [Available online at http://www.arcticatlas.org/maps/themes/cp/.]

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660.

  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic temperature and pressure by global coupled models. J. Climate, 20, 609632.

    • Search Google Scholar
    • Export Citation
  • Choi, G., D. A. Robinson, and S. Kang, 2010: Changing Northern Hemisphere snow seasons. J. Climate, 23, 53055310.

  • Clein, J., A. D. McGuire, E. S. Euskirchen, and M. Calef, 2007: The effects of different climate input datasets on simulated carbon dynamics in the Western Arctic. Earth Interactions, 11. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879.

  • de Beurs, K. M., and G. M. Henebry, 2010: A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Can. J. Remote Sens., 36, S87S110.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., P. Toose, A. Rees, L. Wang, M. English, A. Walker, and M. Sturm, 2010: Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens. Environ., 114, 16991709.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late-twenty-first century. J. Climate, 23, 333351.

    • Search Google Scholar
    • Export Citation
  • Drobot, S., J. Maslanik, U. C. Herzfeld, C. Fowler, and W. L. Wu, 2006: Uncertainty in temperature and precipitation datasets over terrestrial regions of the Western Arctic. Earth Interactions, 10. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Dye, D. G., 2002: Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972-2000. Hydrol. Processes, 16, 30653077.

    • Search Google Scholar
    • Export Citation
  • Euskirchen, E. S., A. D. McGuire, and F. S. Chapin, 2007: Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Global Change Biol., 13, 24252438.

    • Search Google Scholar
    • Export Citation
  • Euskirchen, E. S., A. D. McGuire, T. S. Rupp, F. S. Chapin, and J. E. Walsh, 2009: Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003-2100. J. Geophys. Res., 114, G04022, doi:10.1029/2009JG001095.

    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. J. Cassano, M. Holland, M. C. Serreze, and P. Uotila, 2009a: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 2: Eurasian watersheds. Int. J. Climatol., 29, 12441261.

    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. Cassano, M. Holland, M. Serreze, and P. Uotila, 2009b: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 1: The Mackenzie River Basin. Int. J. Climatol., 29, 12261243.

    • Search Google Scholar
    • Export Citation
  • Foster, D. J., Jr., and R. D.Davy, 1988: Global snow depth climatology. Rep. USAFETAC/TN-88/006, U.S. Air Force Environmental Technology Application Center, Scott Air Force Base, IL, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Frei, A., and D. A. Robinson, 1999: Northern Hemisphere snow extent: Regional variability 1972–1994. Int. J. Climatol., 19, 15351560.

    • Search Google Scholar
    • Export Citation
  • Frei, A., J. A. Miller, and D. A. Robinson, 2003: Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J. Geophys. Res., 108, 43694386.

    • Search Google Scholar
    • Export Citation
  • Gerland, S., A. H. H. Renner, F. Godtliebsen, D. Divine, and T. B. Loyning, 2008: Decrease of sea ice thickness at Hopen, Barents Sea, during 1966-2007. Geophys. Res. Lett., 35, L06501, doi:10.1029/2007GL032716.

    • Search Google Scholar
    • Export Citation
  • Greene, E. M., G. E. Liston, and R. A. Pielke Sr., 1999: Simulation of above treeline snowdrift formation using a numerical snow-transport model. Cold Reg. Sci. Technol., 30, 135144.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., T. R. Karl, R. W. Knight, and G. L. Stenchikov, 1994: Changes of snow cover, temperature and radiative heat balance over the Northern Hemisphere. J. Climate, 7, 16331656.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., R. W. Knight, V. Razuvaev, O. N. Bulygina, and T. R. Karl, 2006: State of the ground: Climatology and changes during the past 69 years over Northern Eurasia for a rarely used measure of snow cover and frozen land. J. Climate, 19, 49334955.

    • Search Google Scholar
    • Export Citation
  • Hasholt, B., G. E. Liston, and N. T. Knudsen, 2003: Snow distribution modelling in the Ammassalik Region, South East Greenland. Nord. Hydrol., 34, 116.

    • Search Google Scholar
    • Export Citation
  • Hastings, D. A., and Coauthors, 1999: The Global Land One-kilometer Base Elevation (GLOBE) digital elevation model, version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, digital media. [Available online at http://www.ngdc.noaa.gov/mgg/topo/globe.html.]

    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., G. E. Liston, and W. A. Reiners, 2002: Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming, USA. Arct. Antarct. Alp. Res., 34, 262273.

    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., G. E. Liston, and W. A. Reiners, 2006: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell., 197, 3551.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2010: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 2648.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72, 251298.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185200.

    • Search Google Scholar
    • Export Citation
  • Hosaka, M., D. Nohara, and A. Kitoh, 2005: Changes in snow cover and snow water equivalent due to global warming simulated by a 20-km-mesh global atmospheric model. SOLA, 1, 9396, doi:10.2151/sola.2005-025.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kohler, J., O. Brandt, M. Johansson, and T. Callaghan, 2006: A long-term Arctic snow depth record from Abisko, northern Sweden, 1913-2004. Polar Res., 25, 91113.

    • Search Google Scholar
    • Export Citation
  • König, M., J.-G. Winther, and E. Isaksson, 2001: Measuring snow and glacier ice properties from satellite. Rev. Geophys., 39, 127.

  • Lawrence, D. M., and A. G. Slater, 2010: The contribution of snow condition trends to future ground climate. Climate Dyn., 34, 969981, doi:10.1007/s00382-009-0537-4.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34, 17051715.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397.

  • Liston, G. E., and D. K. Hall, 1995: An energy balance model of lake ice evolution. J. Glaciol., 41, 373382.

  • Liston, G. E., and M. Sturm, 1998: A snow-transport model for complex terrain. J. Glaciol., 44, 498516.

  • Liston, G. E., and M. Sturm, 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3, 646659.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and M. Sturm, 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35, 325334.

  • Liston, G. E., and J.-G. Winther, 2005: Antarctic surface and subsurface snow and ice melt fluxes. J. Climate, 18, 14691481.

  • Liston, G. E., and K. Elder, 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276.

  • Liston, G. E., and K. Elder, 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and C. A. Hiemstra, 2008: A simple data assimilation system for complex snow distributions (SnowAssim). J. Hydrometeor., 9, 9891004.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and C. A. Hiemstra, 2011: Representing grass– and shrub–snow–atmosphere interactions in climate system models. J. Climate, 24, 20612079.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J.-G. Winther, O. Bruland, H. Elvehøy, and K. Sand, 1999: Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45, 273285.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J.-G. Winther, O. Bruland, H. Elvehøy, K. Sand, and L. Karlöf, 2000: Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarct. Sci., 12, 6979.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J. P. McFadden, M. Sturm, and R. A. Pielke Sr., 2002: Modeled changes in arctic tundra snow, energy, and moisture fluxes due to increased shrubs. Global Change Biol., 8, 1732.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., R. B. Haehnel, M. Sturm, C. A. Hiemstra, S. Berezovskaya, and R. D. Tabler, 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53, 241256.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., C. A. Hiemstra, K. Elder, and D. W. Cline, 2008: Meso-cell study area (MSA) snow distributions for the Cold Land Processes Experiment (CLPX). J. Hydrometeor., 9, 957976.

    • Search Google Scholar
    • Export Citation
  • Lynch, A. H., A. G. Slater, and M. Serreze, 2001: The Alaskan Arctic frontal zone: Forcing by orography, coastal contrast, and the boreal forest. J. Climate, 14, 43514362.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2010: Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Climatic Change, 99, 141153.

    • Search Google Scholar
    • Export Citation
  • McGuire, A. D., F. S. Chapin, J. E. Walsh, and C. Wirth, 2006: Integrated regional changes in arctic climate feedbacks: Implications for the global climate system. Annu. Rev. Environ. Resour., 31, 6191.

    • Search Google Scholar
    • Export Citation
  • McNamara, J. P., D. L. Kane, and L. D. Hinzman, 1998: An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: A nested watershed approach. J. Hydrol., 206, 3957.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and G. E. Liston, 2010: The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, Southeast Greenland. J. Appl. Meteor. Climatol., 49, 4767.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, B. Hasholt, and N. T. Knudsen, 2006: Snow-distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, Southeast Greenland. J. Hydrometeor., 7, 808824.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., B. Hasholt, and G. E. Liston, 2008: Climatic control on river discharge simulations, Zackenberg River drainage basin, northeast Greenland. Hydrol. Processes, 22, 19321948.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, K. Steffen, E. Hanna, and J. H. Christensen, 2009: Greenland Ice Sheet surface mass-balance modelling and freshwater flux for 2007, and in a 1995–2007 perspective. Hydrol. Processes, 23, 24702484, doi:10.1002/hyp.7354.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, and J. H. Christensen, 2010: Greenland Ice Sheet surface mass-balance modeling in a 131-year perspective, 1950–2080. J. Hydrometeor., 11, 325.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18991922.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

    • Search Google Scholar