Extreme Cold Winter Temperatures in Europe under the Influence of North Atlantic Atmospheric Blocking

Jana Sillmann Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Jana Sillmann in
Current site
Google Scholar
PubMed
Close
,
Mischa Croci-Maspoli Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland

Search for other papers by Mischa Croci-Maspoli in
Current site
Google Scholar
PubMed
Close
,
Malaak Kallache Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), Gif-sur-Yvette, and Climpact, Paris, France

Search for other papers by Malaak Kallache in
Current site
Google Scholar
PubMed
Close
, and
Richard W. Katz National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard W. Katz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

North Atlantic atmospheric blocking conditions explain part of the winter climate variability in Europe, being associated with anomalous cold winter temperatures. In this study, the generalized extreme value (GEV) distribution is fitted to monthly minima of European winter 6-hourly minimum temperatures from the ECHAM5/MPI-OM global climate model simulations and the ECMWF reanalysis product known as ERA-40, with an indicator for atmospheric blocking conditions being used as covariate. It is demonstrated that relating the location and scale parameter of the GEV distribution to atmospheric blocking improves the fit to extreme minimum temperatures in large areas of Europe. The climate model simulations agree reasonably with ERA-40 in the present climate (1961–2000). Under the influence of atmospheric blocking, a decrease in the 0.95th quantiles of extreme minimum temperatures can be distinguished. This cooling effect of atmospheric blocking is, however, diminished in future climate simulations because of a shift in blocking location, and thus reduces the chances of very cold winters in northeastern parts of Europe.

Current affiliation: Canadian Centre for Climate Modeling and Analysis, University of Victoria, Victoria, British Columbia, Canada.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jana Sillmann, Canadian Centre for Climate Modeling and Analysis, University of Victoria, P.O. Box 3065 STN CSC, Victoria, BC V8W 3V6, Canada. E-mail: jana.sillmann@ec.gc.ca

Abstract

North Atlantic atmospheric blocking conditions explain part of the winter climate variability in Europe, being associated with anomalous cold winter temperatures. In this study, the generalized extreme value (GEV) distribution is fitted to monthly minima of European winter 6-hourly minimum temperatures from the ECHAM5/MPI-OM global climate model simulations and the ECMWF reanalysis product known as ERA-40, with an indicator for atmospheric blocking conditions being used as covariate. It is demonstrated that relating the location and scale parameter of the GEV distribution to atmospheric blocking improves the fit to extreme minimum temperatures in large areas of Europe. The climate model simulations agree reasonably with ERA-40 in the present climate (1961–2000). Under the influence of atmospheric blocking, a decrease in the 0.95th quantiles of extreme minimum temperatures can be distinguished. This cooling effect of atmospheric blocking is, however, diminished in future climate simulations because of a shift in blocking location, and thus reduces the chances of very cold winters in northeastern parts of Europe.

Current affiliation: Canadian Centre for Climate Modeling and Analysis, University of Victoria, Victoria, British Columbia, Canada.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jana Sillmann, Canadian Centre for Climate Modeling and Analysis, University of Victoria, P.O. Box 3065 STN CSC, Victoria, BC V8W 3V6, Canada. E-mail: jana.sillmann@ec.gc.ca
Save
  • Abeysirigunawardena, D. S., E. Gilleland, and D. Bronaugh, 2009: Extreme wind regime responses to climate variability and change in the inner south coast of British Columbia Canada. Atmos.–Ocean, 47, 4161.

    • Search Google Scholar
    • Export Citation
  • Altenhoff, A. M., O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C. Davies, 2008: Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis. Tellus, 60A, 10531063, doi:10.1111/j.1600-0870.2008.00354.x.

    • Search Google Scholar
    • Export Citation
  • Bates, G., and G. A. Meehl, 1986: The effect of CO2 concentration on the frequency of blocking in a general circulation model coupled to a simple mixed layer ocean. Mon. Wea. Rev., 114, 687701.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, doi:10.1029/2010GL044613.

    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., and A. C. Davison, 2005: Generalized additive modelling of sample extremes. Appl. Stat., 54, 207222, doi:10.1111/j.1467-9876.2005.00479.x.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. 1st ed. Springer Verlag, 224 pp.

  • Croci-Maspoli, M., and H. Davies, 2009: Key dynamical features of the 2005/06 European winter. Mon. Wea. Rev., 137, 644678.

  • Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007a: Atmospheric blocking: Space-time links to the NAO and PNA. Climate Dyn., 29, 713725, doi:10.1007/s00382-007-0259-4.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007b: A multifaced climatology of atmospheric blocking and its recent linear trend. J. Climate, 20, 633649.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., 52B, 393442.

  • Doblas-Reyes, F. J., M. Deque, F. Valero, and D. B. Stephenson, 1998: North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus, 50A, 573595, doi:10.1034/j.1600-0870.1998.t01-4-00002.x.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Statistics and Applied Probability Monogr., Vol. 57, Chapman and Hall/CRC, 456 pp.

    • Search Google Scholar
    • Export Citation
  • El Adlouni, S., T. B. M. J. Ouarda, X. Zhang, R. Roy, and B. Bobee, 2007: Generalized maximum likelihood estimators for the non-stationary generalized extreme value model. Water Resour. Res., 43, W03410, doi:10.1029/2005WR004545.

    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., and L. H. C. Tippett, 1928: Limiting forms of the frequency distributions of the largest or smallest number of a sample. Proc. Cambridge Philos. Soc., 24, 180190.

    • Search Google Scholar
    • Export Citation
  • Furrer, E. M., R. W. Katz, M. D. Walter, and R. Furrer, 2010: Statistical modeling of hot spells and heat waves. Climate Res., 43, 191205, doi:10.3354/cr00924.

    • Search Google Scholar
    • Export Citation
  • Goubanova, K., and L. Li, 2007: Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future scenario simulations. Global Planet. Change, 57, 2742.

    • Search Google Scholar
    • Export Citation
  • Gumbel, E. J., 1958: Statistics of Extremes. Columbia University Press, 375 pp.

  • Hagemann, S., K. Arpe, and L. Bengtsson, 2005: Validation of the hydrological cycle of ERA-40. Max Planck Institute for Meteorology, Earth System Science Rep. 10, 53 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/publikationen/erdsystem_10.pdf.]

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 2010: Statistics of extremes in climate change. Climatic Change, 100, 7176, doi:10.1007/s10584-010-9834-5.

  • Katz, R. W., M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in hydrology. Adv. Water Resour., 25, 12871304, doi:10.1016/S0309-1708(02)00056-8.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., G. S. Brush, and M. B. Parlange, 2005: Statistic of extremes: Modeling ecological disturbances. Ecology, 86, 11241134.

  • Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J. Climate, 13, 37603788.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173.

  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444.

    • Search Google Scholar
    • Export Citation
  • Leadbetter, M. R., G. Lindgren, and H. Rootzen, 1983: Extremes and Related Properties of Random Sequences and Processes. Springer Verlag, 336 pp.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2005: Why is the North Atlantic block more frequent and long-lived during the negative NAO phase? Geophys. Res. Lett., 32, L20804, doi:10.1029/2005GL022927.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., R. J. Oglesby, and I. I. Mokhov, 1997: Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres. Climate Dyn., 13, 181195.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., H. W. Rust, and T. J. Osborn, 2010a: Synoptic airflow and UK daily precipitation extremes. Extremes, 13, 133153, doi:10.1007/s10687-010-0102-x.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010b: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., T. J. Osborn, and H. W. Rust, 2011: The influence of synoptic airflow on UK daily precipitation extremes. Part I: Observed spatio-temporal relations. Climate Dyn., 36, 261275, doi:10.1007/s00382-009-0710-9.

    • Search Google Scholar
    • Export Citation
  • Marsland, J. S., H. Haak, J. H. Junclaus, M. Latif, and F. Roeske, 2003: The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., R. Mizuta, and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, 2000: Special Report on Emission Scenarios. Cambridge University Press, 612 pp.

  • Palutikof, J. P., B. B. Brabson, D. H. Lister, and S. T. Adcock, 1999: A review of methods to calculate extreme wind speeds. Meteor. Appl., 6, 119132.

    • Search Google Scholar
    • Export Citation
  • Parey, S., 2008: Extremely high temperatures in France at the end of the century. Climate Dyn., 30, 99112, doi:10.1007/s00382-007-0275-4.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., 2005: Climate change indices. WMO Bull., 54, 8386.

  • Randall, D., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part 1: Model description. Max Planck Institute for Meteorology Rep. 349, 140 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.]

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., T. Woollings, J. Knight, G. Martin, and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152.

    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233249.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, doi:10.1029/2003GL019341.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., C. Appenzeller, H. C. Davies, M. A. Liniger, W. Müller, T. F. Stocker, and M. Yoshimori, 2006: Challenges posed by and approaches to the study of seasonal-to-decadal climate variability. Climatic Change, 79, 3163, doi:10.1007/s10584-006-9076-8.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37, L14703, doi:10.1029/2010GL043830.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., and E. Roeckner, 2008: Indices for extreme climate events in projections of anthropogenic climate change. Climatic Change, 86, 83104.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., and M. Croci-Maspoli, 2009: Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys. Res. Lett., 36, L10702, doi:10.1029/2009GL038259.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., I. Trigo, C. D. Camara, and T. J. Osborn, 2004: Climate impact of the European winter blocking episodes from the NCEP/NCAR Re-analysis. Climate Dyn., 23, 1728.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van Ulden, A. P., and G. J. van Oldenborgh, 2006: Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in central Europe. Atmos. Chem. Phys., 6, 863881.

    • Search Google Scholar
    • Export Citation
  • Wang, C., H. Liu, and S. Lee, 2010: The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161168, doi:10.1002/asl.278.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., F. W. Zwiers, and V. R. Swail, 2004: North Atlantic Ocean wave climate change scenarios for the twenty-first century. J. Climate, 17, 23682383.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., 2010: Dynamical influences on European climate: An uncertain future. Philos. Trans. Roy. Soc. London, 368A, 37333756.

  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Wang, F. W. Zwiers, and P. Y. Groisman, 2010: The influence of large-scale climate variability on winter maximum daily precipitation over North America. J. Climate, 23, 29022915.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1262 462 19
PDF Downloads 834 239 5