Differing Impacts of Resolution Changes in Latitude and Longitude on the Midlatitudes in the LMDZ Atmospheric GCM

Virginie Guemas Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by Virginie Guemas in
Current site
Google Scholar
PubMed
Close
and
Francis Codron Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by Francis Codron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article examines the sensitivity of the Laboratoire de Météorologie Dynamique Model with Zoom Capability (LMDZ), a gridpoint atmospheric GCM, to changes in the resolution in latitude and longitude, focusing on the midlatitudes. In a series of dynamical core experiments, increasing the resolution in latitude leads to a poleward shift of the jet, which also becomes less baroclinic, while the maximum eddy variance decreases. The distribution of the jet positions in time also becomes wider. On the contrary, when the resolution increases in longitude, the position and structure of the jet remain almost identical, except for a small equatorward shift tendency. An increase in eddy heat flux is compensated by a strengthening of the Ferrel cell. The source of these distinct behaviors is then explored in constrained experiments in which the zonal-mean zonal wind is constrained toward the same reference state while the resolution varies. While the low-level wave sources always increase with resolution in that case, there is also enhanced poleward propagation when increasing the resolution in longitude, preventing the jet shift. The diverse impacts on the midlatitude dynamics hold when using the full GCM in a realistic setting, either forced by observed SSTs or coupled to an ocean model.

Current affiliation: Institut Català de Ciències del Clima, Barcelona, Spain.

Corresponding author address: Virginie Guemas, Institut Català de Ciències del Clima, Carrer del Doctor Trueta 203, 08005 Barcelona, Spain. E-mail: vguemas@ic3.cat

Abstract

This article examines the sensitivity of the Laboratoire de Météorologie Dynamique Model with Zoom Capability (LMDZ), a gridpoint atmospheric GCM, to changes in the resolution in latitude and longitude, focusing on the midlatitudes. In a series of dynamical core experiments, increasing the resolution in latitude leads to a poleward shift of the jet, which also becomes less baroclinic, while the maximum eddy variance decreases. The distribution of the jet positions in time also becomes wider. On the contrary, when the resolution increases in longitude, the position and structure of the jet remain almost identical, except for a small equatorward shift tendency. An increase in eddy heat flux is compensated by a strengthening of the Ferrel cell. The source of these distinct behaviors is then explored in constrained experiments in which the zonal-mean zonal wind is constrained toward the same reference state while the resolution varies. While the low-level wave sources always increase with resolution in that case, there is also enhanced poleward propagation when increasing the resolution in longitude, preventing the jet shift. The diverse impacts on the midlatitude dynamics hold when using the full GCM in a realistic setting, either forced by observed SSTs or coupled to an ocean model.

Current affiliation: Institut Català de Ciències del Clima, Barcelona, Spain.

Corresponding author address: Virginie Guemas, Institut Català de Ciències del Clima, Carrer del Doctor Trueta 203, 08005 Barcelona, Spain. E-mail: vguemas@ic3.cat
Save
  • Boer, G. J., and M. Lazare, 1988: Some results concerning the effect of horizontal resolution and gravity-wave drag on simulated climate. J. Climate, 1, 789806.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Denis, 1997: Numerical convergence of the dynamics of a GCM. Climate Dyn., 13, 359374.

  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485.

  • Boyle, J. S., 1993: Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (cycle 33) model. J. Climate, 6, 796815.

    • Search Google Scholar
    • Export Citation
  • Branković, C., and D. Gregory, 2001: Impact of horizontal resolution on seasonal integrations. Climate Dyn., 18, 123143.

  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915.

    • Search Google Scholar
    • Export Citation
  • Chen, M., R. B. Rood, and L. L. Takacs, 1997: Impact of a semi-Lagrangian and an Eulerian dynamical core on climate simulations. J. Climate, 10, 23742389.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and J. J. Tribbia, 1993: An effect of the model’s horizontal resolution on stationary eddies simulated by the NCAR CCM1. J. Climate, 6, 16571664.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., C. Dreverton, A. Braun, and D. Cariolle, 1994: The ARPEGE/IFS atmosphere model: A contribution to the French community climate modelling. Climate Dyn., 10, 249266.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1999: Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251268.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., S. Voronin, and L. M. Polvani, 2008: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19, 22672289.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umschied, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52, 543.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and P. J. Phillipps, 1993: Sensitivity of the eddy momentum flux to meridional resolution in atmospheric GCMs. J. Climate, 6, 499506.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and A. Armengaud, 1999: The use of finite-volume methods for atmospheric advection of trace species. Part I: Test of various formulations in a general circulation model. Mon. Wea. Rev., 127, 822837.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., 1998: Test of the dynamics of two global weather prediction models of the German Weather Service: The Held-Suarez test (in German). M.S. thesis, Dept. of Meteorology, Meteorological Institute of the University of Bonn, 151 pp.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1977: Computational aspects of numerical models for weather prediction and climate simulation. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 1–66.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and D. L. Williamson, 1991: Dependence of cloud amount on horizontal resolution in the National Center for Atmospheric Research Community Climate Model. J. Geophys. Res., 96, 10 95510 980.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., C. Genthon, Z. X. Li, and P. L. Van, 1997: Studies of the Antarctic climate with a stretched-grid general circulation model. J. Geophys. Res., 102, 13 73113 745.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1997: OPA version 8.1 ocean general circulation model reference manual . LODYC Tech. Rep. 3, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4 model. L’Institut Pierre-Simon Laplace Note du Pôle de Modélisation 26, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 9931023.

  • Phillips, T. J., L. C. Corsetti, and S. L. Grotch, 1995: The impact of horizontal resolution on moist processes in the ECMWF model. Climate Dyn., 11, 85102.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211236.

    • Search Google Scholar
    • Export Citation
  • Ringler, T., R. Heikes, and D. Randall, 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 24712490.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63, 21092122.

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the Southern Ocean circulations in IPCC coupled model control simulations. J. Climate, 19, 45604575.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975a: Compressible model flows on the sphere. J. Atmos. Sci., 32, 21032110.

  • Sadourny, R., 1975b: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689.

  • Stendel, M. and E. Roeckner, 2006: Impacts of horizontal resolution on simulated climate statistics in ECHAM4. Max Planck Institute for Meteorology Rep. 253, 57 pp. [Available from MPI for Meteorology, Bundesstr. 53, D-20146 Hamburg, Germany.]

    • Search Google Scholar
    • Export Citation
  • Stratton, R. A., 1999: A high resolution AMIP integration using the Hadley Centre model HadAM2b. Climate Dyn., 15, 928.

  • Van Leer, B., 1977: Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection. J. Comput. Phys., 23, 276299.

    • Search Google Scholar
    • Export Citation
  • Wan, H., M. A. Giorgetta, and L. Bonaventura, 2008: Ensemble Held–Suarez test with a spectral transform model: Variability, sensitivity, and convergence. Mon. Wea. Rev., 136, 10751092.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 1999: Convergence of atmospheric simulations with increasing horizontal resolution and fixed forced scales. Tellus, 51A, 663673.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008: Convergence of aqua-planet simulations with increasing resolution in the community atmospheric model, version 3. Tellus, 60A, 848862.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. T. Kiehl, and J. J. Hack, 1995: Climate sensitivity of the NCAR Community Climate Model (CCM2) to horizontal resolution. Climate Dyn., 11, 377397.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. G. Olson, and B. A. Boville, 1998: A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev., 126, 10011012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 105 8
PDF Downloads 111 48 6