Persistent Atmospheric and Oceanic Anomalies in the North Atlantic from Summer 2009 to Summer 2010

Zeng-Zhen Hu NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Zeng-Zhen Hu in
Current site
Google Scholar
PubMed
Close
,
Arun Kumar NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
,
Bohua Huang Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland, and Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Bohua Huang in
Current site
Google Scholar
PubMed
Close
,
Yan Xue NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Yan Xue in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
, and
Bhaskar Jha NOAA/NWS/NCEP Climate Prediction Center, and Wyle Information Systems, Camp Springs, Maryland

Search for other papers by Bhaskar Jha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this work, the authors analyze the air–sea interaction processes associated with the persistent atmospheric and oceanic anomalies in the North Atlantic Ocean during summer 2009–summer 2010 with a record-breaking positive sea surface temperature anomaly (SSTA) in the hurricane Main Development Region (MDR) in the spring and summer of 2010. Contributions to the anomalies from the El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and a long-term trend are identified. The warming in the tropical North Atlantic during summer 2009–summer 2010 represented a typical response to ENSO, preconditioned and amplified by the influence of a strong and persistent negative phase of the NAO. The long-term trends enhanced the warming in the high and low latitudes and weakened the cooling in the midlatitudes. The persistent negative phase of the NAO was associated with active thermodynamic air–sea interaction in the North Atlantic basin. Surface wind anomalies associated with the NAO altered the ocean surface heat flux and changed the SSTA, which was likely further enhanced by the positive wind speed–evaporation–SST feedback. The total heat flux was dominated by the latent and sensible heat fluxes, while the shortwave radiation contributed to the tropical SSTA to a lesser degree. Sensitivity experiments with an atmospheric general circulation model forced by observed SST in the Atlantic Ocean alone suggested that the Atlantic SSTA, which was partly forced by the NAO, had some positive contribution to the persistence of the negative phase of the NAO. Therefore, the persistent NAO condition is partly an outcome of the global climate anomalies and the ocean–atmosphere feedback within the Atlantic basin. The combination of the ENSO, NAO, and long-term trend resulted in the record-breaking positive SSTA in the MDR in the boreal spring and summer of 2010. On the basis of the statistical relationship, the SSTA pattern in the North Atlantic was reasonably well predicted by using the preceding ENSO and NAO as predictors.

Corresponding author address: Zeng-Zhen Hu, NOAA/NWS/NCEP, Climate Prediction Center, 5200 Auth Rd., Suite 605, Camp Springs, MD 20746. E-mail: zeng-zhen.hu@noaa.gov

Abstract

In this work, the authors analyze the air–sea interaction processes associated with the persistent atmospheric and oceanic anomalies in the North Atlantic Ocean during summer 2009–summer 2010 with a record-breaking positive sea surface temperature anomaly (SSTA) in the hurricane Main Development Region (MDR) in the spring and summer of 2010. Contributions to the anomalies from the El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and a long-term trend are identified. The warming in the tropical North Atlantic during summer 2009–summer 2010 represented a typical response to ENSO, preconditioned and amplified by the influence of a strong and persistent negative phase of the NAO. The long-term trends enhanced the warming in the high and low latitudes and weakened the cooling in the midlatitudes. The persistent negative phase of the NAO was associated with active thermodynamic air–sea interaction in the North Atlantic basin. Surface wind anomalies associated with the NAO altered the ocean surface heat flux and changed the SSTA, which was likely further enhanced by the positive wind speed–evaporation–SST feedback. The total heat flux was dominated by the latent and sensible heat fluxes, while the shortwave radiation contributed to the tropical SSTA to a lesser degree. Sensitivity experiments with an atmospheric general circulation model forced by observed SST in the Atlantic Ocean alone suggested that the Atlantic SSTA, which was partly forced by the NAO, had some positive contribution to the persistence of the negative phase of the NAO. Therefore, the persistent NAO condition is partly an outcome of the global climate anomalies and the ocean–atmosphere feedback within the Atlantic basin. The combination of the ENSO, NAO, and long-term trend resulted in the record-breaking positive SSTA in the MDR in the boreal spring and summer of 2010. On the basis of the statistical relationship, the SSTA pattern in the North Atlantic was reasonably well predicted by using the preceding ENSO and NAO as predictors.

Corresponding author address: Zeng-Zhen Hu, NOAA/NWS/NCEP, Climate Prediction Center, 5200 Auth Rd., Suite 605, Camp Springs, MD 20746. E-mail: zeng-zhen.hu@noaa.gov
Save
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 11–15.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14, 42664291.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., C. Deser, L. Terray, J. W. Hurrell, and M. Drévillon, 2004: Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J. Climate, 17, 33493363.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516518.

    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, and L. Ji, 2003: Tropical Atlantic seasonal predictability: The roles of El Niño remote influence and thermodynamic air-sea feedback. Geophys. Res. Lett., 30, 1501, doi:10.1029/2002GL016119.

    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227, 36253640, doi:10.1016/j.jcp.2007.05.014.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, doi:10.1029/2000JD000307.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., M. A. Alexander, C. Deser, and M. H. England, 2011: On the persistence of cold-season SST anomalies associated with the annular modes. J. Climate, 24, 25002515.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, L17707, doi:10.1029/2010GL044256.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15 83515 847.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST anomalies on the atmospheric circulation. Geophys. Res. Lett., 26, 29692972.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., A. W. Robertson, and T. Huck, 2003: The role of Atlantic ocean–atmosphere coupling in affecting North Atlantic Oscillation variability. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 147–172.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, doi:10.1002/joc.631.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102, 929945.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544.

    • Search Google Scholar
    • Export Citation
  • Gillett, N., H. F. Graf, and T. J. Osborn, 2003: Climate change and the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 193–209.

    • Search Google Scholar
    • Export Citation
  • Hilmer, M., and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett., 27, 989992.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and Z. Wu, 2004: The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus, 56A, 112124.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2006a: Physical processes associated with tropical Atlantic SST meridional gradient. J. Climate, 19, 55005518.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2006b: Air-sea coupling in the North Atlantic during summer. Climate Dyn., 26, 441457, doi:10.1007/s00382-005-0094-4.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2006c: On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic sea surface temperature anomalies. J. Geophys. Res., 111, D12103, doi:10.1029/2005JD006339.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2007a: Physical processes associated with tropical Atlantic SST gradient during the anomalous evolution in the southeastern ocean. J. Climate, 20, 33663378.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., and B. Huang, 2007b: The predictive skill and the most predictable pattern in the tropical Atlantic: The effect of ENSO. Mon. Wea. Rev., 135, 17861806.

    • Search Google Scholar
    • Export Citation
  • Huang, B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133152, doi:10.1007/s00382-004-0443-8.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2005: The ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Climate, 18, 16521672.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Z.-Z. Hu, 2007: Cloud-SST feedback in southeastern tropical Atlantic anomalous events. J. Geophys. Res., 112, C03015, doi:10.1029/2006JC003626.

    • Search Google Scholar
    • Export Citation
  • Huang, B., P. S. Schopf, and Z. Pan, 2002: The ENSO effect on the tropical Atlantic variability: A regionally coupled model study. Geophys. Res. Lett., 29, 2039, doi:10.1029/2002GL014872.

    • Search Google Scholar
    • Export Citation
  • Huang, B., Y. Xue, D. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 49014925.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperatures. Geophys. Res. Lett., 23, 665668.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–36.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002a: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002b: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037.

  • Kumar, A., Q. Zhang, P. Peng, and B. Jha, 2005: SST-forced atmospheric variability in an atmospheric general circulation model. J. Climate, 18, 39533967.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, P. Chang, and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19, 59495970.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., A. Butler, B. Jha, A. Kumar, and W. Wang, 2010: Unusual extremes in the negative phase of the Arctic Oscillation during 2009. Geophys. Res. Lett., 37, L10704, doi:10.1029/2010GL043338.

    • Search Google Scholar
    • Export Citation
  • Latif, M., K. Arpe, and E. Roeckner, 2000: Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys. Res. Lett., 27, 727730.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. B. Enfield, and C. Wang, 2008: Why do some El Niños have no impact on tropical North Atlanti SST? Geophys. Res. Lett., 35, L16705, doi:10.1029/2008GL034734.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean atmosphere coupling. J. Climate, 17, 18591882.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Q. Zhang, and L. Wu, 2004: Remote impact on tropical Atlantic climate variability: Statistical assessment and dynamic assessment. J. Climate, 17, 15291549.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2010: Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Climate, 23, 59585977.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898.

    • Search Google Scholar
    • Export Citation
  • Mehta, V. M., 1998: Variability of the tropical ocean surface temperatures at decadal–multidecadal timescales. Part I: The Atlantic Ocean. J. Climate, 11, 23512375.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., C. Wang, and D. Enfield, 2010: The Intra-Americas Sea springtime surface temperature anomaly dipole as fingerprint of remote influences. J. Climate, 23, 4356.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., S.-P. Xie, A. Numaguti, and Y. Tanimoto, 2001: Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys. Res. Lett., 28, 15071510.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, S. Li, and M. P. Hoerling, 2005: Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses. J. Climate, 18, 480496.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., V. A. Alexeev, U. A. Bhatt, E. I. Polyakova, and X. Zhang, 2010: North Atlantic warming: Patterns of long-term trend and multidecadal variability. Climate Dyn., 34, 439457, doi:10.1007/s00382-008-0522-3.

    • Search Google Scholar
    • Export Citation
  • Portis, D. H., J. E. Walsh, M. E. Hamly, and P. J. Lamb, 2001: Seasonality of the North Atlantic Oscillation. J. Climate, 14, 20692078.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., C. R. Mechoso, and Y.-J. Kim, 2000: The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J. Climate, 13, 122138.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the winter North Atlantic Oscillation and European climate. Nature, 398, 320323.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. K., 2003: On the predictability of North Atlantic climate. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 173–192.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors 2006: The NCEP climate forecast system. J. Climate, 19, 34833517.

  • Saravanan, R., and P. Chang, 2004: Thermodynamic coupling and predictability of tropical sea surface temperature. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 171–180.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and B. Qian, 2002: Seasonal predictability of the winter NAO from North Atlantic sea surface temperatures. Geophys. Res. Lett., 29, 2049, doi:10.1029/2002GL014952.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13, 28452862.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37, L14703, doi:10.1029/2010GL043830.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., and S.-P. Xie, 2002: Inter-hemispheric decadal variations in SST, surface wind, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80, 11991219.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere Annular Mode. Science, 293, 8589.

  • Thompson, D. W. J., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 81–112.

    • Search Google Scholar
    • Export Citation
  • Timlin, M. S., M. A. Alexander, and C. Deser, 2002: On the reemergence of North Atlantic SST anomalies. J. Climate, 15, 27072712.

  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551559.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and G. Krahmann, 2003: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113–146.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/Annular Mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791806.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atlantic climate variability and its associated atmospheric circulation cells. J. Climate, 15, 15161536.

  • Wang, C., H. Liu, and S.-K. Lee, 2010: The record-breaking cold temperature during the winter of 2009/10 in the North Hemisphere. Atmos. Sci. Lett., 11, 161168, doi:10.1002/asl.278.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 1999: Tropical-extratropical connection in the Atlantic atmosphere-ocean variability. Geophys. Res. Lett., 26, 22472250.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Q. Zhang, and Z. Liu, 2004: Toward understanding tropical Atlantic variability using coupled modeling surgery. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 157–170.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470.

  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., R. W. Reynolds, and V. Banzon, 2010: Sea surface temperatures. Bull. Amer. Meteor. Soc., 91, S53S56.

  • Zhang, S., A. Rosati, and T. Delworth, 2010: The adequacy of observing systems in monitoring the Atlantic meridional overturning circulation and North Atlantic climate. J. Climate, 23, 53115323.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 217 17
PDF Downloads 178 61 4